
A Generic Framework for Representing Context-aware

Security Policies in the Cloud

Simeon Velouds1, Yiannis Verginadis2, Ioannis Patiniotakis2, Iraklis Paraskakis1 and

Gregoris Mentzas2

1South East European Research Centre (SEERC), The University of Sheffield, International

Faculty CITY College, 24 Prox. Koromila St., 54622, Thessaloniki, Greece

{sveloudis, iparaskakis}@seerc.org
2Institute of Communications and Computer Systems, National Technical University of Athens,

Athens, Greece

{jverg, ipatini, gmentzas}@mail.ntua.gr

Abstract. Enterprises are increasingly embracing cloud computing in order to

reduce costs and increase agility in their everyday business operations. Neverthe-

less, due mainly to confidentiality, privacy and integrity concerns, many organi-

sations are reluctant to migrate their sensitive data to the cloud. In order to alle-

viate these security concerns, this paper proposes the PaaSword framework: a

generic PaaS solution that provides capabilities for guiding developers through

the process of defining appropriate policies for protecting their sensitive data.

More specifically, this paper outlines the construction of an extensible and de-

clarative formalism for representing policy-related knowledge, one which disen-

tangles the definition of a policy from the code employed for enforcing it. It also

outlines the construction of a suitable Context-aware Security Model, a frame-

work of concepts and properties in terms of which the policy-related knowledge

is expressed.

Keywords: Context-aware security, Ontologies, Linked USDL, Policies, Access

Control, Data privacy, Security-by-design

1 Introduction

There is generally consensus among analysts that cloud computing is being adopted by

enterprises at an ever-increasing pace [1]. The main force that drives this trend is the

new economy-based paradigm that cloud computing introduces [2] which enables sig-

nificant cost savings, whilst accelerating the deployment and utilisation of new appli-

cations [3]. Nevertheless, the increasing adoption of cloud computing transforms the

enterprise IT environment into a matrix of interwoven infrastructure, platform and ap-

plication services that are delivered remotely, over the Internet, by diverse service pro-

viders [4]. These services may span not only different technologies and geographies,

but also entirely different domains of ownership and control. This creates a set of un-

precedented security vulnerabilities stemming mainly from the fact that corporate data

reside in externally-controlled servers or untrusted cloud providers. Exploiting these

This work has been published in Markus Helfert, Donald Ferguson, Victor Méndez

Muñoz, Jorge Cardoso (Eds): “Cloud Computing and Services Science: 6th Inter-

national Conference, CLOSER 2016, Rome, Italy, April 23-25, 2016, Revised Se-

lected Papers”, pp. 339-359, Springer International Publishing, 2017, DOI:

10.1007/978-3-319-62594-2_17

mailto:iparaskakis%7d@seerc.org

vulnerabilities may result in data confidentiality and integrity breaches [5]. Evidently,

the benefits offered by the cloud computing paradigm cannot fully materialise without

addressing these new security challenges [6].

A promising approach to alleviating the security concerns associated with cloud

computing is to assist application developers in defining effective security controls for

safeguarding the sensitive data accessed through the cloud applications that they de-

velop. To this end, in [6] we proposed the PaaSword framework, a generic PaaS solu-

tion that provides capabilities for guiding developers through the process of defining

appropriate policies for protecting sensitive data. More specifically, three are the main

kinds of policy that the PaaSword framework aims at supporting: (i) Data encryption

policies, which determine the strength of the cryptographic protection of a sensitive

object; (ii) data fragmentation and distribution policies, which determine the manner

in which sensitive data objects are fragmented and distributed to different physical serv-

ers for privacy reasons; (iii) access control policies, which determine when to grant, or

deny, access to sensitive data.

In order to effectively guide developers in defining security policies, the PaaSword

framework bears two seminal characteristics. Firstly, it hinges upon an adequate

scheme that takes into account the inherently dynamic and heterogeneous nature of

cloud environments. Secondly, it captures the knowledge that lurks behind such a

scheme (e.g. actions, subjects, locations, environmental attributes, etc.) using a generic

and extensible formalism, one which can be tailored to the particular needs of different

cloud applications. The first characteristic calls for the incorporation of the notion of

context in policies, i.e. the consideration of dynamically-changing contextual attributes

that may characterise data accesses. It therefore involves the development of a re-usable

and generic Context-aware Security Model which goes beyond the traditional context-

insensitive security (e.g. DAC, MAC, RBAC [7]). The second characteristic calls for

the adoption of a declarative approach to modelling policy-related knowledge, one

which is orthogonal to the code of any particular cloud application and which can be

easily adapted to suit the needs of any such application.

The aim of this paper is twofold. On the one hand, it outlines the construction of the

Context-aware Security Model. On the other hand, it outlines the construction of an

extensible and declarative formalism for representing policy-related knowledge, one

which disentangles the definition of a policy from the code employed for enforcing it,

bringing about the following advantages: (i) it allows the policy-related knowledge to

be extended and instantiated to suit the needs of a particular application, independently

of the code employed by the application; (ii) it forms an adequate basis for reasoning

generically about the correctness and consistency of the security policies, hence about

the effectiveness of the security controls that these policies give rise to.

The rest of this paper is organised as follows. In Section 2, we elaborate on a context-

aware security model that will be used as the underlying vocabulary for describing the

three kinds of policy that the PaaSword framework supports. In Section 3, we introduce

a policy model that allows for the semantic description of the policies. In Section 4, we

present a case study that demonstrates the use of the context-aware security model, as

well as of the policy model. Finally, Section 5 briefly discusses relevant work and Sec-

tion 6 concludes the paper by presenting the next steps for the implementation and

evaluation of the proposed approach.

2 Context-aware Security Model

In this section, we present a context-aware access model, which can be used by the

developers in order to annotate database Entities, Data Access Objects (DAO) or any

other web endpoints that give access to sensitive data managed by cloud applications.

This context model conceptualises the aspects, which must be considered during the

selection of a data-access policy. These aspects may be any kind of information which

is machine-parsable [8]; indicatively they may include the user’s IP address and loca-

tion, the type of device that s/he is using in order to interact with the application as well

as his/her position in the company. These aspects can be interpreted in different ways

during the security policy enforcement. In particular, the context-aware access model

can set the basis for determining which data is accessible under which circumstances.

Fig. 1. Context-aware security meta-model

2.1 Context-aware Security Meta-Model

In Fig. 1, we present a meta-model that captures the main facets of the Context-

aware Security Model along with their associations. Specifically, this model

comprises of two different kinds of facets that may give rise to:

 Dynamic security controls – These controls grant or deny access to sensitive data on

the basis of dynamically evolving contextual attributes, which are associated with

the entity requesting the access. The relevant model facets are:

─ Security Context Element

─ Permission

─ Context Pattern

 Static security controls - These controls are independent of any dynamically evolv-

ing contextual attributes. They mainly correspond to the distribution and crypto-

graphic protection features that certain data artefacts must have and affect the boot-

strapping phase of a cloud application. The relevant model facet is the:

─ Data Distribution and Encryption Element (DDE)

According to this meta-model, instances of these aforementioned facets formulate the

Context-aware Security Model. Furthermore, Context Pattern Ele-

ments are directly associated to Security Context Elements (through the

hasSecurityContextElement property) in order to be defined, while the latter can be

associated with certain Permission Elements. Due to space limitations, we dis-

cuss only the context model facets that are relevant to access control.

Fig. 2. Security Context Element Overview

2.2 Context Model Facets

This section provides an elaboration of the initial set of facets that have been included

in the part of the model that gives rise to dynamic security controls. We note that all

these model facets are focused on the aspects relevant to access control for cloud ser-

vices.

Security Context Element.

The Security Context Element refers to the following five top-level concepts

(see Fig. 2):

 Location - This class describes a physical and/or a network location where data

are stored or from which a particular entity is requesting to access data.

 DateTime - This class describes the specific chronological point expressed as ei-

ther instant or interval that characterises an access request (extends owl-

time:TemporalEntity).

 Connectivity - This class captures the information related to the connection

used by the Subject for accessing sensitive data (see Fig. 2).

 Object - This class refers to any kind of artefacts that should be protected based

on their sensitivity levels. These artefacts may refer to (non-) relational data, files,

software artefacts that manage sensitive data or even infrastructure artefacts used.

 Subject - An instance of this class represents the agent seeking access to a partic-

ular data artefact. This can be an organization, a person, a group or a service (extends

foaf:Agent, goodrelations:BusinessEntity, goodrela-

tions:ProductOrService).

Fig. 3. UML Class diagram for the Connectivity context element

In Fig. 3, we provide further details regarding the Connectivity top level concept

that include subclasses, imported or extended external classes, data and object proper-

ties. The identifier pcm (stands for PaaS Control Model) recognises the namespace un-

derlying the classes and properties of the proposed vocabulary. Due to space limitations

the details of all the top level concepts are not explained in this paper but they are

available in the following URL: http://imu.ntua.gr/software/context-aware-security-

model.

Context Pattern.

The next facet of this model is the Context Pattern model that includes the

following top-level concepts:

 Location pattern - It refers to recurring motives of data accesses that are rec-

ognized with respect to the Location context element.

 DateTime pattern - It refers to recurring motives of data accesses that are rec-

ognized with respect to the DateTime context element.

 Connectivity pattern - It refers to recurring motives of data accesses that

are recognized with respect to the Connectivity context element.

 Object pattern - It refers to recurring motives of data accesses that are recog-

nized with respect to the Object context element.

 Permission pattern - It refers to recurring motives of data accesses that are

recognized with respect to the Permission element.

 Access Sequence Pattern - It refers to data accesses that are recognized by

any preceding access actions made by a particular Subject (extends Kaos:Acces-

sAction).

For the above vocabulary, we use the identifier pcpm (stands for PaaS Context Pattern

Model) for recognising the respective namespace of underlying classes and properties.

Permission.

Another important facet is the Permission model that involves the following

top-level concepts (see Fig. 6):

 Data Permission - This class refers to any action allowed by a Subject upon a

data entity (extends schema.org:Action)

 DDL Permission - This class reveals the data definition language (DDL) related

actions on a specific Object.

The Data Permission involves four subclasses:

 Datastore Permission – It describes any action allowed by a Subject upon a

data entity in a datastore (e.g. Search, List, Select, Insert, etc.)

 File Permission - It describes any action allowed by a Subject upon a file (e.g.

Read, ChDir, Move, Delete, etc.)

 WebEndpoint Permission – It describes any web endpoint related action that

is allowed upon a data artefact (e.g. Get, Put, Post, Delete).

 Volume Permission - It refers to any access permission to a dedicated infra-

structure artefact.

http://imu.ntua.gr/software/context-aware-security-model
http://imu.ntua.gr/software/context-aware-security-model

The DDL Permission involves two subclasses:

 Datastore DDL Permission – It describes any DDL related permission on a

datastore (e.g. Create, Alter, Drop).

 File System Structure Permission - It describes any DDL related per-

mission on a file (e.g. CreateDir, RenameDir, CopyDir, DeepCopyDir, ChOwner,

etc.).

Fig. 4. UML Class diagram for the Permission context element

For the above vocabulary, we use the identifier ppm (stands for PaaS PaaS Permission

Model) for recognising the respective namespace of underlying classes and properties.

In Section 3, we demonstrate the way that these contextual elements that give rise to

dynamic security controls, can set the basis for developing a policy model for paas-

enabled access control.

3 Policy model for PAAS-enabled access control

As already mentioned in Section 1, three are the main types of security policy that the

PaaSword framework aims at supporting: (i) Data encryption policies. These determine

the strength of the cryptographic protection that each sensitive object enjoys for confi-

dentiality reasons. They give rise to security controls enforceable during bootstrapping

of a cloud application. (ii) Data fragmentation and distribution policies. These deter-

mine the manner in which sensitive data objects must be fragmented and distributed to

different physical servers for privacy reasons. They too give rise to security controls

enforceable during application bootstrapping. (iii) Access control policies. These are

essentially ABAC policies that determine when to grant, or deny, access to sensitive

data on the basis of dynamically-evolving contextual attributes associated with the en-

tity requesting the access. Context awareness is deemed of utmost importance for lev-

eraging the security of cloud-based applications which by definition operate in dynamic

and heterogeneous environments. Access control policies give rise to security controls

dynamically enforceable during application execution time. Due to space limitations,

in this paper we only consider access control policies.

3.1 Access Control Policy Model

We argue that, in order to aid application developers in defining effective ABAC poli-

cies for any kind of sensitive data, the PaaSword framework must be underpinned by

an underlying ontological model, one which bears the following characteristics:

 It is founded on a framework of relevant interrelated concepts which capture all those

knowledge artefacts that are required for describing an ABAC policy. Such a frame-

work is provided by the vocabulary outlined in Section 2.

 It uses an extensible formalism for accommodating the framework of interrelated

concepts, hence expressing ABAC policies. Such a representation disentangles the

definition of a policy from the code employed for enforcing it, offering the following

seminal advantages: (i) It allows the framework of relevant interrelated concepts to

be extended and instantiated, independently of the code employed by the application.

Such an extension/instantiation aims at customising the framework to the particular

needs of a given application. (ii) It forms an adequate basis for reasoning generically

about the correctness and consistency of the ABAC policies, hence about the effec-

tiveness of the security controls that these policies give rise to.

ABAC Policy Rules.

Following an approach inspired by the XACML standard [9], an ABAC policy com-

prises one or more rules. A rule is the most elementary structural element and the basic

building block of policies. A generic template for ABAC rules is provided in Table 1.

Table 1. Generic ABAC rule template

[actor] with [context expression] has [authorisation] for [action] on

[controlled object]

The template defines a generic structure, in terms of relevant attributes, to which all

ABAC rules in the PaaSword framework adhere. It comprises several attributes which

are further elaborated below.

 actor identifies the subject who may request access to perform an operation on a

sensitive object; it draws its values from the pcm:Subject class of the Security

Context Element model defined in Section 2.2.

 context expression is a Boolean expression which identifies the environmental con-

ditions that must hold in order to permit, or deny, the performance of an operation

on a sensitive object. Context expressions are further elaborated in the following

subsection.

 authorisation determines the type of authorisation (positive i.e. ‘permit’, or negative

i.e. ‘deny’) that is granted.

 action identifies the operation that may, or may not, be performed on the protected

sensitive object; it draws its values from the ppm:Permission class of the Secu-

rity Context Element model defined in Section 2.2.

 controlled object identifies the sensitive object on which access is requested; it draws

its values from the pcm:Object class of the Security Context Element model de-

fined in Section 2.

In our ontological model, an ABAC rule takes the form of an instance of the class

pac:ABACRule (see Fig. 5) of our framework. A number of object properties are

attached to this class which are intended to capture the aforementioned attributes. As

depicted in Fig. 5, these associate the pac:ABACRule class with an appropriate

framework of relevant classes from the vocabulary of Section 2.2 which adequately

capture the attributes of the ABAC rule template. The identifier pac (stands for PaaS

Access Control) recognises the namespace underlying the classes and properties of the

proposed ontological model.

Fig. 5. ABAC ontological model

Context Expressions.

A context expression takes the form of an instance of the class pac:ContextEx-

pression of our framework (see Fig. 5). It specifies a number of constraints on the

values of one or more instances drawn from the vocabularies pcpm:ContextPat-

tern and pcm:SecurityContextElement defined in Section 2.1. The class

pac:ContextExpression is associated with these vocabularies through the object

properties pac:hasPatternParameter and pac:hasParameter respectively

depicted in Fig. 6. As we would expect, a context expression may combine two or more

constraints using logical connectives (conjunction, disjunction, exclusive disjunction,

negation). In order to capture such combinations of constraints, the pac:Con-

textExpression class encompasses a subclass for each logical connective. A con-

text expression may be defined recursively, in terms of one or more other context ex-

pressions. This is captured by associating the pac:ContextExpression class with

itself through the properties pac:hasParameter and pac:hasPatternParam-

eter (see Fig. 6).

Fig. 6. Context expression ontological model

ABAC Policies and Policy Sets.

In our ontological model, an ABAC policy takes the form of an instance of the class

pac:ABACPolicy which represents It is associated with the rules that it comprises

through the property pac:hasABACRule. An ABAC policy may comprise a multi-

tude of ABAC rules which potentially evaluate to different (and conflicting) access

control decisions. This calls for a combining algorithm which reconciles the different

decisions and determines an overall decision for the entire policy [9]. An example of a

combining algorithm is the ‘deny-overrides’ algorithm, whereby a policy evaluation

resolves to ‘deny’ if at least one of its constituent rules evaluates to ‘deny’, or if none

of them evaluates to ‘permit’. A combining algorithm takes the form of an instance of

the class pac:CombiningAlgorithms depicted in Fig. 5. A combining algorithm

is attached to an ABAC policy through the property pac:hasPolicyCombin-

ingAlgorithm.

Following an approach inspired by the XACML standard [9], access control policies

are grouped into policy sets. In our ontological model, a policy set takes the form of an

instance of the class pac:ABACPolicySet (see Fig. 5). A policy is associated with

its enclosing policy set through the property pac:belongsToABACPolicySet. A

policy set may exhibit a hierarchical structure and comprise one or more other ABAC

policy sets. This recursive inclusion is captured by rendering the pac:be-

longsToABACPolicySet property applicable to ABAC policy sets too (see Fig.

5). ABAC policy sets are also associated with combining algorithms. As in the case of

policies, these reconcile the potentially different access control decisions to which the

policies comprising a policy set may evaluate.

It is to be noted here that analogous policy models have been devised for the rest of

the policy types outlined at the beginning of Section 3.

3.2 Access Control Policies in Linked USDL

Section 3.1 outlined a model for the generic representation of ABAC policies. This

section demonstrates how this model can be incorporated into the ontological frame-

work provided by Linked USDL [10], and in particular, into USDL-SEC – Linked

USDL’s security profile (USDL stands from Unified Service Description Language).

By capitalising on USDL-SEC, our approach avoids the use of bespoke, non-standards-

based, ontologies for the representation of ABAC policies (see Section 5.2 for a rele-

vant outline of such ontologies). Instead, it is based on a diffused ontological frame-

work which has recently attracted considerable research interest.

In addition, the adoption of Linked USDL brings about the following advantages

[11]: (i) Linked USDL relies on existing widely-used RDF(S) vocabularies (such as

GoodRelations, FOAF and SKOS), whilst it can be easily extended through linking to

further existing, or new, RDF(S) ontologies. In this respect, it promotes knowledge

sharing whilst it increases the interoperability, reusability and generality of our frame-

work. (ii) By offering a number of different profiles, Linked USDL provides a holistic

and generic solution able to adequately capture a wide range of business details. This

is important for our work as it allows us to capture the business aspects of the security

policies encountered within our framework. (iii) Linked USDL is designed to be easily

extensible through linking to further existing, or new, RDF(S) ontologies. This is par-

ticularly important for our model as it facilitates seamless integration with the Context-

aware security model of Section 2. (iv) It provides ample support for modelling, com-

paring, and trading services and service bundles. It also provides support for specifying,

tracking, and reasoning about the involvement of entities in service delivery chains.

This is important for our work for it allows comparisons to be drawn between different

policy models that may potentially be offered through our framework.

The USDL-SEC Vocabulary.

USDL-SEC identifies five top-level concepts: Security Profile, Security Goal, Security

Mechanism, Security Technology and Security Realization Type (see Fig. 7). The Secu-

rity Profile is a root concept that encompasses the different security profiles to which a

cloud service, or application, may adhere. Each security profile is associated with one

or more security goals. This gives rise to the Security Goal concept which encompasses

a number of sub-concepts each representing a distinct security goal. A complete list of

all security goals provided by USDL-SEC is depicted in Fig. 7. Each security goal is

associated with one or more security mechanisms through which it is implemented.

This gives rise to the Security Mechanism concept which encompasses a number of

sub-concepts each representing a particular kind of security mechanism – a complete

list of all the security mechanism kinds provided by USDL-SEC is depicted in Fig. 7.

Each security mechanism is associated with one or more security technologies through

which it is realised, giving rise to the Security Technology concept. In addition, a secu-

rity mechanism is associated with a particular layer of the ISO/OSI protocol stack at

which it is realised (e.g. the network or the application layer). This gives rise to the

concept Security Realization Type that specifies such a layer.

The concepts and their associations identified above are formalised in terms of clas-

ses of the ontology, and each concept association takes the form of an object property1.

In fact, four object properties are introduced: hasSecurityGoal which associates

a security profile with its corresponding security goal; isImplementedBy which

associates a security goal with the mechanism that achieves it; isReal-

izedByTechnology which associates a security mechanism with the technology

that implements it; hasSecurityRealizationType which associates a security

mechanism with the ISO/OSI layer at which it is realised. In addition, the fact that a

concept forms a sub-concept of another concept is captured through the SKOS

broader property.

Fig. 7. USDL-SEC

The above framework of classes and properties lays the foundations for constructing

a set of ontological templates suitable for the semantic representation of the three kinds

of security policy that the PaaSword project supports. The following subsection, pro-

vides an account of how this framework is reified in order to give rise to an ontological

template for the representation of ΑΒAC policies. Analogous accounts apply to the

1 All USDL-SEC classes and properties are prefixed with the usdl-sec namespace. To avoid

notational clutter, this namespace is omitted here.

other two kinds of policy, namely Data Encryption policies and Data Fragmentation

and Distribution policies.

Incorporating ABAC Policies into USDL-SEC.

At the highest level of abstraction, the ABAC policy model forms, essentially, a partic-

ular security profile to which a cloud application may adhere. In this respect it is mod-

elled as an instance of USDL-SEC’s SecurityProfile class, namely

pac:PaaSAccessControlProfile. A security profile is associated, through the

object property hasSecurityGoal, with one or more security goals from the

USDL-SEC class SecurityGoal. In the case of ABAC policies, the security goal is

authorisation. This is modelled in Fig. 8 by associating the instance pac:PaaSAc-

cessControlProfile with an instance, say pac:AccessControlGoal, of

the Authorization class through the property hasSecurityGoal. The Au-

thorization class forms a sub-concept of SecurityGoal.

Fig. 8. USDL-SEC customisation (only classes and properties used in this paper are depicted)

The authorisation goal is achieved by means of a suitable access control mechanism.

USDL-SEC provides a layer of abstraction, namely the concept SecurityMecha-

nism, for the specification of such a mechanism. In particular, it provides the class

AccessControl, a sub-concept of SecurityMechanism, an instance of which,

say pac:AccessControlMechanism, represents the access control mechanism

offered by the PaaSword framework. This instance is associated with the pac:Ac-

cessControlGoal instance through the property isImplementedBy.

The access control mechanism represented by the instance pac:AccessCon-

trolMechanism is realised by means of some underlying concrete security technol-

ogy. USDL-SEC provides a layer of abstraction, namely the concept Securi-

tyTechnology, for the specification of such a technology. In our model, the access

control mechanism is realised by the access control technology provided by the

PaaSword framework. This is modelled by introducing the pac:PaaSABAC subclass

(see Fig. 8), along with the instance pac:AccessControlTechnology which

represents this access control technology. This instance is associated with the access

control mechanism through the property isRealizedByTechnology (see Fig. 8).

The pac:PaaSABAC subclass is associated, through the property pac:hasABAC-

PoliceSet, with the class pac:ABACPolicySet (the top concept of the ABAC

policy model of Fig. 5). This essentially captures the fact that the access control mech-

anism is realised through the policies encompassed in one or more ABAC policy sets.

It is to be noted here that the policy models devised for the rest of the policy types

outlined at the beginning of Section 3 are incorporated into USDL-SEC in an analogous

manner.

4 Case Study

The purpose of this section is to demonstrate how the Context-aware Security model of

Section 2 and the policy model of Section 3 can be further reified in order to give rise

to concrete security policies. In particular, we present a number of policies – and their

constituent rules – that form part of a fictitious, albeit realistic, scenario. This scenario

is deliberately kept simple and it is by no means intended to form a fully-fledged use

case. It is to be noted here that we are currently obliged to confine ourselves to such

simple scenarios since all the involved individuals, and their relevant properties, must

be entered into the model manually. Clearly, for a fully-fledged use case, this process

would require a large amount of tedious work; consideration of such use cases is there-

fore deferred until an editor that automates this process is developed.

4.1 The Car Park Scenario

A company has been contracted to develop a smart system for managing vehicle traffic

and parking spaces in a European city. As part of this system, cameras are installed in

a number of privately-owned long-stay car parks. We assume that, in addition to provid-

ing real-time footage of the car park premises for security purposes, the cameras also

capture and store the following data: (i) Which vehicle (if any) occupies a particular

parking space; vehicles are identified by their registration plate numbers. (ii) The date

a vehicle entered the car park; we assume that in long-stay car parks the exact time of

entry, or exit, of a car is not of interest as costs are typically charged on a per-day basis.

(iii) The date a vehicle exited the park. We assume that these data are stored in the

database table ParkingPositions depicted in Fig. 9.

Fig. 9. The ParkingPositions table

In order to compress costs and ensure storage elasticity, it has been decided to mi-

grate the data contained in these tables to the cloud. To this end, SIEMENS’ R&D

department undertook the development of a cloud application, namely AppDB, through

which car park administrators can obtain access to these data. The application is avail-

able for Windows, Mac OS and Android devices.

In order to alleviate security concerns, the application was developed with the aid of

the framework presented in Section 3, which allowed the incorporation of a number of

security controls during application design time. These controls implement a set of se-

curity policies which take the form of reifications of the ABAC policy model presented

in Section 3 (see Fig. 5).

4.2 ABAC Policy

As part of the long-stay car park scenario we require that a user of the AppDB applica-

tion, typically an employee of a car park should only be allowed read/write access to

the table of Fig. 9 from specific locations and during specific hours. This requirement

aims at preventing situations whereby the user of the AppDB accesses the table from a

public place thus giving the opportunity to a third party to inadvertently, or on purpose,

look at – or even alter – the data stored in the table.

Fig. 10. Instantiated ABAC rule template

This requirement gives rise to two access control rules, one allowing read access

from specific locations and during specific times, and one allowing write access from

the same locations and during the same times. These rules are represented by the indi-

viduals ex1:ABACRule_1 and ex1:ABACRule_2 respectively depicted in Fig. 10.

These rules are further elaborated below. ABAC rule 1 takes the form:

ex1:ParkingOwner with ex1:expr has pac:positive for

ppm:Read on ex1:PaymentsTable

It reifies the generic rule template of Fig. 5. The rule is associated with a number of

contextual attributes through the properties depicted in Fig. 10. These attributes are

represented by the individuals illustrated in Fig. 10 and detailed in Table 2.

Table 2. ABAC rules contextual attributes

Object

property
Individual

Instance of
Description

pbe:has

Controlled

Object

ex1:Payments

Table

pcm:

Relational

Associates

ex1:ABACRule_1

with the relational

table of Fig. 9 that it

protects.

pbe:has

Authorisation
pac:positive

pac:

Authorisation

Associates

ex1:ABACRule_1

with the positive

(permit)

authorisation.

pac:hasAction ppm:Read
ppm:Datastore

Permission

Associates

ex1:ABACRule_1

with the read

operation.

pac:hasActor
ex1:Parking

Employee
pcm:Person

Associates

ex1:ABACRule_1

with a parking

employee.

pac:has

Context

Expression

ex1:expr
pac:Context

Expression

Associates

ex1:ABACRule_1

with a context

expression that

restricts the locations

and the times from

which the relational

table of Fig. 10 can

be accessed.

ABAC rule 2 takes the form:

ex1:ParkingOwner with ex1:expr has pac:positive for

ppm:Write on ex1:PaymentsTable

This rule is associated with the same contextual attributes as the ones of ABAC rule 1.

4.3 Context Expression

As already indicated, the rules represented by the individuals ex1:ABACRule_1 and

ex1:ABACRule_2 involve a context expression which restricts the locations from

which, and the times during which, the relational table of Fig. 9 can be accessed. This

context expression is represented by the individual ex1:expr depicted in Fig. 10.

This individual is an instance of the class pac:ANDContextExpression (see Fig.

6) and therefore the parameters that it involves are logically conjuncted. These param-

eters are associated with ex1:expr through the object property pac:hasParame-

ter. They are modelled in Fig. 11 by the individuals ex1:EmployeeWorking-

Hours and ex1:expr1. The former individual is an instance of the class

pcm:DateTimeInterval introduced by the Context-aware Security model of Sec-

tion 2. It is restricted to the required working hours (e.g. say 09:00 to 17:00) through

the properties pcm:hasBeginning, pcm:hasEnd and pcm:hasTimeZone. The

former two properties associate ex1:EmployeeWorkingHours with the

xsd:dateTime values T09:00:00 and T17:00:00 respectively. The latter property

associates ex1:EmployeeWorkingHours with the xsd:string value +02:00.

The latter individual, namely ex1:expr1, is yet another context expression mod-

elled as an instance of the class pac:ORContextExpression. This means that its

two parameters, namely ex1:Parking_1 and ex1:Parking_2 (see Fig. 11), are

logically disjuncted. These parameters are instances of the class pcm:Point from the

Context-aware Security model presented in Section 2. They represent the two parking

buildings from the long-stay car park scenario.

Fig. 11. Context expression for ex1:ABACRule_1 and ex1:ABACRule_2

5 Related work

The research outlined in this section is divided into two main categories: (i) works that

are related to the Context-aware Security of Section 2; works that pertain to the Policy

Model of Section 3.

5.1 Research related to the Context-aware Security Model

In the literature, there is a plethora of context models. For example, [12] and [13] review

models of context that range from key-value models, to mark-up schemes, graphical

models, object-oriented models, logic-based models and ontology-based models. An

interesting context model is the one proposed in [14], which was initially developed for

mobile devices and later extended for the use in service-based applications in [15]. An-

other example is the one in [16] who developed an ontological model of the W4H clas-

sification for context. The W4H ontology provides a set of general classes, properties,

and relations exploiting the five semantic dimensions: identity (who), location (where),

time (when), activity (what) and device profiles (how). Furthermore, authors exploited

the concepts of the W4H ontology by including domain-independent common context

concepts from existing work; e.g. FOAF, vCard, the OWL-Time Ontology, etc. The

five dimensions of context have been also pointed out earlier by Abowd and Mynatt

[17] who stated that context should include the ‘five W’: Who, What, Where, When,

and Why. For example, by ‘Who’, they mean that it is not enough to identify a person

as a customer; the person’s past actions and service related background should also be

identified for better service provision. ‘What’ refers to the activities conducted by the

people involved in the context and interactions between them. ‘Where’ represents lo-

cation data. ‘When’ is related to time. ‘Why’ specifies the reason for ‘Who’ did ‘What’.

‘Why’ represents a complicated notion and acts as the driving force for context sensi-

tive information systems. In addition to that, from the literature review we found inter-

esting efforts that concerned modelling languages, which take context explicitly into

account. The first such effort was ContextUML a UML-based modelling language that

was specifically designed for Web service development and applies model-driven de-

velopment principles; see [18]. In a Web-service-based environment, ContextUML

considers that context contains any information that can be used by a Web service to

adjust its execution and output.

The need for the exploitation of context in the access control mechanisms is quite

evident from the state-of-the-art. Nevertheless, we found that even dedicated context-

aware extensions to traditional access control models (e.g. Role-based Access Control

- RBAC) either do not cover all the contextual elements with a reusable security related

context model or are proven hard to maintain in dynamic environments where users

often change roles or are not known a priori [19]. On the other hand, pure ontological

models (e.g. [16], or even Attribute-based Access Control (ABAC) approaches (e.g.

[20]) they do not seem to cover all the security requirements associated with the lifecy-

cle of a cloud application (i.e. bootstrapping and run-time). Specifically, either they do

not cover the full range of contextual elements that are associated with all the security

aspects of sensitive data managed by cloud applications or they are based on heavy

inferencing that is considered as inefficient for such dynamic environments [21].

5.2 Research related to the Policy Model

Turning now to policies and policy-based applications, syntactic descriptions pro-

mote a declarative approach to policy expression, one which aims at replacing a trend

whereby policies are encoded imperatively, as part of the same software that checks for

their compliance. Several markup languages have been proposed for the declarative

description of policies, some prominent examples being [22], [9], [23] and [24]. These

generally provide XML-based syntaxes for expressing policy rules and sets. Neverthe-

less, such syntactic descriptions fail to capture the knowledge lurking behind policies.

In this respect, they are merely data models that lack any form of semantic agreement

beyond the boundaries of the organisation that developed them. Any interoperability

relies on the use of vocabularies that are shared among all parties involved in an inter-

action.

In order to overcome the aforementioned limitations, semantically-rich approaches

to the specification of policies have been brought to the attention of the research com-

munity. These generally embrace Semantic Web representations for capturing what we

term action-oriented policies, i.e. policies which control when a particular actor or sub-

ject can perform a specified action on, or through the use of, a particular resource. These

approaches typically employ ontologies in order to assign meaning to actors, actions

and resources. Several works in the area of semantic policy representation have been

reported in the literature [25], [26] and [27]. In [25], the authors presented KAoS – a

general-purpose policy management framework which exhibits a three-layered archi-

tecture comprising:

 A human interface layer, which provides a graphical interface for policy specifica-

tion in natural language.

 A policy management layer, which uses OWL [28] to encode and manage policy-

related knowledge.

 A policy monitoring and enforcement layer, which automatically grounds OWL pol-

icies to a programmatic format suitable for policy-based monitoring and policy en-

forcement.

In [26] the authors proposed Rei – a policy specification language expressed in OWL-

Lite [28]. It allows the declarative representation of a wide range of policies which

control which actions can be performed, and which actions should be performed, by a

specific entity. Furthermore, it defines a set of concepts (rights, prohibitions, obliga-

tions, and dispenations) for specifying and reasoning about access control rules. In this

respect, it provides an abstraction which allows the specification of a desirable set of

behaviours which are potentially understandable – hence enforceable – by a wide range

of autonomous entities in open and dynamic environments.

In [27], the authors recognise that cloud computing, and in particular the concept of

multi-tenancy, calls for policy-driven access control mechanisms. They propose an on-

tology-based framework to capture the common semantics and structure of different

types of access control policies (e.g. XACML policies, firewall policies, etc.), and fa-

cilitate the process of detecting anomalies in these policies. Their ontology captures the

underlying domain concepts involved, the policy structure and the policy attributes.

Particular types of access control policies are obtained by appropriately instantiating

the ontology.

6 Conclusions

We have presented suitable vocabularies of concepts and properties, namely the Secu-

rity Context Element, the Context Pattern and the Permission, which adequately cap-

tures the knowledge lurking behind ABAC policies. We have also proposed a generic

ontological model for the abstract representation of ABAC policies, which disentangles

the definition of a policy from the actual code, employed for enforcing it, bringing about

the advantages outlined in Section 3.1. The model is underpinned by the Security Con-

text Element vocabulary, and is incorporated into the ontological framework offered by

USDL-SEC (Linked USDL’s security profile). Such a model forms the basis of the

PaaSword framework – essentially a security-by-design framework which aims at aid-

ing cloud application developers in defining effective access control policies for any

kind of sensitive data.

Any effective use of the ABAC policy model requires a mechanism through which

it can be suitably customised in order to allow for the specification of concrete ABAC

policies. Such a customisation amounts to an extension and/or instantiation of the ab-

stract classes and properties presented in Section 3. It is the responsibility of such a

mechanism to ensure that this extension/instantiation takes place according to a set of

predefined governance policies. In the future, we intend to investigate the construction

of a higher-level ontological framework that will generically accommodate these gov-

ernance policies and thus pave the way for the construction of a generic customisation

mechanism that can be easily adapted to the particular needs of the potential adopter of

our framework.

Acknowledgements

The research leading to these results has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant agreement No 644814.

The authors would like to thank the partners of the PaaSword project

(www.paasword.eu) for their valuable advices and comments.

References

1. Cisco, 2011. Cloud: What an Enterprise Must Know, Cisco White Paper.

2. Vaquero, L.M., Rodero-Merino, L., Caceres, J. and Lindner, M., 2008. A break in the clouds:

Towards a cloud definition. SIGCOMM Comput. Commun. Rev., vol 39, no 1, pp. 50 — 55.

3. Micro, T., 2010. The Need for Cloud Computing Security. Trend Micro.

4. NIST, 2011. Cloud Computing Reference Architecture, National Institute of Standards and

Technology.

5. CSA, 2013. The Notorious Nine. Cloud Computing Top Threats in 2013. Cloud Security Al-

liance.

6. Verginadis, Y., Michalas, A., Gouvas, P., Schiefer, G., Hübsch, G., Paraskakis, I., 2015a.

PaaSword: A Holistic Data Privacy and Security by Design Framework for Cloud Services.

Proceedings of the 5th International Conference on Cloud Computing and Services Science

(CLOSER 2015), May 20-22, Lisbon, Portugal.

7. Ferrari, E., 2010. Access Control in Data Management Systems. Synthesis Lectures on Data

Management, Morgan & Claypool, Vol. 2, No. 1, p. 1-117.

8. Dey, A. K., 2001. Understanding and Using Context. In Personal and Ubiquitous Computing

Journal, vol. 5, no. 1, p. 4-7.

9. OASIS, 2013. OASIS eXtensible Access Control Markup Language (XACML). Available:

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

10. Linked USDL, 2014. Available online: http://linked-usdl.org/.

11. Pedrinaci, C., Cardoso, J. and Leidig, T., 2014. Linked USDL: a Vocabulary for Web-scale

Service Trading. In 11th Extended Semantic Web Conference (ESWC).

12. Strang, T., Linnhoff-Popien, C., 2004. A Context Modeling Survey. In Workshop on Ad-

vanced Context Modelling, Reasoning and Management, (UbiComp'04) - The Sixth Interna-

tional Conference on Ubiquitous Computing. Nottingham, England.

13. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Ri-

boni, D., 2010. A survey of context modelling and reasoning techniques. Pervasive and Mo-

bile Computing, 161-180.

14. Miele, A., Quintarelli, E., Tanca, L., 2009. A methodology for preference-based personaliza-

tion of contextual data. In ACM Proceedings of the 12th International Conference on Extend-

ing Database Technology: Advances in Database Technology (EDBT'09), pp. 287-298, Saint-

Petersburg, Russia.

15. Bucchiarone, A., Kazhamiakin, R., Cappiello, C., Nitto, E., & Mazza, V., 2010. A context-

driven adaptation process for service-based applications. In ACM Proceedings of the 2nd In-

ternational Workshop on Principles of Engineering Service-Oriented Systems (PESOS'10),

pp. 50-56, Cape Town, South Africa.

16. Truong, H.-L., Manzoor, A., Dustdar, S., 2009. On modeling, collecting and utilizing context

information for disaster responses in pervasive environments. In ACM Proceedings of the first

international workshop on Context-aware software technology and applications (CASTA'09),

pp. 25-28, Amsterdam, The Netherlands.

17. Abowd, G., & Mynatt, E., 2000. Charting past, present, and future research in ubiquitous

computing. ACM Transactions on Computer-Human Interaction (TOCHI) - Special issue on

human-computer interaction in the new millennium, 29-58.

18. Truong, H.-L., Manzoor, A., Dustdar, S., 2009. On modeling, collecting and utilizing context

information for disaster responses in pervasive environments. In ACM Proceedings of the first

international workshop on Context-aware software technology and applications (CASTA'09),

pp. 25-28, Amsterdam, The Netherlands.

19. Heupel, M., Fischer, L., Bourimi, M., Kesdogan, D., Scerri, S., Hermann, F., Gimenez, R.,

2012. Context-Aware, Trust-Based Access Control for the di.me Userware. In Proceedings of

the 5th International Conference on New Technologies, Mobility and Security (NTMS'12),

pp. 1-6, Istanbul, Turkey, IEEE Computer Society.

20. Jung, C., Eitel, A., Schwarz, R., 2014. Cloud Security with Context-aware Usage Control

Policies. In Proceedings of the INFORMATIK'14 Conference, pp. 211-222.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

21. Verginadis, Y., Mentzas, G., Veloudis, S., Paraskakis, I., 2015b. A Survey on Context Secu-

rity Policies. In Proceedings of the 1st International Workshop on Cloud Security and Data

Privacy by Design (CloudSPD'15), co-located with the 8th IEEE/ACM International Confer-

ence on Utility and Cloud Computing, Limassol, Cyprus, December 7-10.

22. Specification of Deliberation RuleML 1.01, 2015. Available online: http://wiki.ruleml.org/in-

dex.php/Specification_of_Deliberation_RuleML_1.01.

23. Security Assertions Markup Language (SAML) Version 2.0. Technical Overview, 2008.

Available online: https://www.oasis-open.org/committees/download.php/27819/sstc-saml-

tech-overview-2.0-cd-02.pdf

24. WS-Trust 1.3, 2007. Available online: http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-

trust-1.3-os.doc

25. Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A., Dalton, J. and Aitken, S., 2005.

KAoS Policy Management for Semantic Web Services. IEEE Intel. Sys., vol. 19, no. 4, pp.

32 - 41.

26. Kagal, L., Finin, T. and Joshi, A., 2003. A Policy Language for a Pervasive Computing Envi-

ronment. In 4th IEEE Int. Workshop on Policies for Distributed Systems and Networks

(POLICY '03).

27. Hu, H., Ahn, G.-J. and Kulkarni, K., 2011. Ontology-based policy anomaly management for

autonomic computing. In 7th International Conference on Collaborative Computing: Net-

working, Applications and Worksharing (CollaborateCom)

28. OWL Web Ontology Language Reference. W3C Recommendation, 2004. Available online:

http://www.w3.org/TR/owl-ref/.

https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc
http://www.w3.org/TR/owl-ref/

