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Abstract— Some of the most valuable business benefits that 

accompany the cloud adoption cannot be exploited without 

addressing, first, new data security challenges posed by cloud 

computing distributed nature. A promising approach for 

alleviating these risks is to provide a security-by-design 

framework that will assist cloud application developers in 

defining appropriate context-driven policies that enhance cloud 

security at design-time and enforce access control at run-time. 

This paper discusses a generic and extensible formalism, called 

Context-aware Security Policy Model that can be tailored to the 

particular needs of different cloud applications for enhancing 

the privacy and confidentiality of sensitive data. 

Keywords-Context-aware security; cloud security; Data 

privacy; Security by design  

I.  INTRODUCTION  

The ever increasing adoption of Cloud computing brings 
about significant benefits for enterprises and users with 
respect to cost reduction, increased flexibility and business 
agility. Virtualised IT resources in the cloud enable 
organisations to realise significant cost savings and accelerate 
the deployment of new applications, thus transforming 
business and government at an unprecedented pace [1]. 
Nevertheless, several vulnerabilities constitute major 
concerns, as their potential exploitation may result in data 
confidentiality and integrity breaches [2]. 

Our work towards alleviating such security risks involves 
an approach for assisting cloud application developers in 
specifying effective security controls for sensitive data that are 
manipulated by cloud applications [3]. To this end, a security-
by-design framework is currently being developed, as a PaaS 
security solution, with the objective to guide and assist 
developers through the process of defining the way that 
sensitive data should be persisted, while setting appropriate 
access control policies for safeguarding them. A prerequisite 
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for this framework is a generic and reusable modelling 
formalism that will be used as the background for constructing 
appropriate code-level annotations in order to materialise the 
security-by-design vision. This modelling background has 
two significant aspects. The first one involves all the 
ontological artefacts that allow for the generic description of 
classes, properties and instances that dictate the way that 
sensitive data should be persisted in cloud infrastructures (e.g. 
preferred or excluded locations, cryptographic protection 
required, etc.). Its second part outlines an adequate access 
control scheme, one which hinges upon policies that take into 
account the dynamic and heterogeneous nature of cloud 
environments. This mainly refers to context-aware access 
control and it has been thoroughly discussed in [4].  

 In this respect, this paper sets out to present the part of a 
Context-aware Security Policy Model that can be considered 
valuable for a security-by-design framework. Our main 
objective is to shed light on the ontological reusable artefacts 
that allow for the creation of bootstrapping policies that will 
guide the way that sensitive data should be stored and 
encrypted in the cloud. We believe that the ability to provide 
generic and reusable ontological templates for expressing 
such security requirements, during cloud application 
development, can provide the basis for a valuable toolset for 
maintaining data confidentiality and privacy in the cloud. 

The rest of this paper is organized as follows. Section II 
sets the high-level view of all the relevant ontological artefacts 
for a security-by-design framework. Section III elaborates on 
the main data distribution & encryption modelling elements 
while Section IV presents the policy modelling approach for 
code level annotations that enhance cloud security. Finally, 
Section V presents conclusions and future work. 

II. CONTEXT-AWARE SECURITY META-MODEL 

In [4], we presented a meta-model that captures the main 
facets of a Context-aware Security Model; a model that can 
serve as the background framework for enhancing cloud 
security at design-time and constructing ontological templates 
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for access control policies, to be enforced at runtime. This 
model involves elements that can be used for: 

 enhancing cloud security by modelling fragmentation, 

distribution and cryptographic protection features that 

certain data artefacts must have. This refers to the Data 
Distribution and Encryption Element 

(DDE) that we thoroughly discuss in this paper. 

 granting or denying access to sensitive data on the basis 

of dynamically-evolving contextual attributes [4]. This 

includes the Security Context Element, the 

Permission Element and the Context 

Pattern Element. 

According to this meta-model, instances of these 
aforementioned facets formulate the Context-aware 

Security Model. Based on this model, we are currently 

developing a security-by-design framework called PaaSword 
[3] that allows cloud application developers to annotate their 
code in order to denote the way sensitive data should be 
bootstrapped (e.g. fragments, distribution locations, excluded 
providers, encryption etc.) and automatically produce 
enforceable context-aware access control policies. Next, we 
discuss only the context model facets that are relevant to cloud 
security enhancement at design time. 

III. DATA DISTRIBUTION & ENCRYPTION ELEMENTS 

The DDE Elements are a significant part of the Context-
aware Security Model [4] and refers to the details of 
encrypting data artefacts, fragmenting and distributing them 
in a way that even if the encryption key is somehow 
intercepted by an adversary, the sensitive information is still 
protected. The DDE elements comprise the following three 
top-level ontological concepts: 

 Cryptographic Type - This class refers to the 

cryptographic process that should be adopted for 
encoding sensitive data. 

 Data Distribution - This class captures 

aspects of the data distribution required for 
enhancing the security of sensitive data elements. 

 Data Fragmentation - This class refers to the 

details about the way data should be fragmented in 
order to be distributed for security purposes.  

For each of these top-level classes we provide details with 
respect to their sub-classes and the identified properties 
required for creating meaningful instances of the model. 
These instances will be used (see Section IV) for guiding the 
bootstrapping of sensitive data artefacts with respect to how, 
where and with what level of protection these data should be 
persisted. We note that dedicated software mechanisms are 
currently being developed for allowing the Administrator, the 
Product Manager or, depending on the organisation’s needs, 
even the Cloud Application developer to update and 
instantiate the Context-aware Security Model.  

TABLE I: DETAILS OF DATA DISTRIBUTION ELEMENTS 

Class 

Taxonomy 

Levels 

Proper-

ties 

Description 

Symmetric  Refers to the details of the chosen 

cryptographic algorithm that uses the same 

cryptographic key for both encryption of 

plaintext and decryption of cipher text (e.g. 

AES [6], RC4 [7]). 

 hasSymm

etricKey

Size 

This property associates Symmetric with a 

positive integer that expresses the length of 

the key used for encryption/decryption (e.g. 

128, 192 or 256 bits) 

 hasSymm

etricBloc

kSize 

This property associates Symmetric with a 

positive integer that expresses how long is 

the fixed length string of bits on which the 

cypher operates (e.g. 128 bits). 

Asymmetric  Refers to the details of the chosen 

cryptographic algorithm that uses different 

cryptographic keys for encryption (public 

key) of plaintext and decryption of cipher 

text (private key) (e.g. RSA [8], ECC [9]). 

 hasAsym

metricKe

ySize 

This property associates an Asymmetric 

instance with a positive integer that 

expresses the length of the key used for 

encryption/decryption (e.g. 1,024, 4,096 bit) 

 hasCurve This property associates an Asymmetric 

instance with a string that denotes the 

algebraic structure of elliptic curves used 

(e.g. P-192, P-224, P-256, P-384, P-521). 

Specifically, these refer to the sizes of 

primes used for recommending elliptic 

curves. 

Hybrid  This class refers to the details of the chosen 

cryptographic algorithm that might combine 

symmetric-key and public-key 

cryptography (e.g. OpenPGP [10]). This is 

a subclass of both Symmetric and 

Asymmetric classes.  

A. Cryptographic Type  

The cryptographic protection of sensitive data to be 
managed by dedicated cloud application is discussed in terms 
of this ontological class. Table I presents the details of the 
Cryptographic Type element, where core classes and 

sub-classes are described along with their main associated 
properties. The Cryptographic Type is associated with 

the hasModeofOperation property. This property 

associates the Cryptographic Type with a string that 

denotes how to repeatedly apply a cipher's single-block 
operation to securely transform amounts of data larger than a 
block (e.g. ECB, CBC, CFB, OFB, CTR [5]). 

B. Data Distribution 

The Data Distribution class involves all the 

aspects required for controlling how the sensitive data 
artefacts should be distributed across different datastores in 
the cloud. This involves the following subclasses: 

 Distribution Metric - This class quantifies 

the data distribution required for enhancing the 
security of sensitive information. It involves the 
properties numberOfVMs, numberOfServers, 

numberOfPhysicalLocations for 

associating a Distribution Metric instance 



with a positive integer that denotes the number of 
different VMs, servers and physical locations, 
respectively, that the sensitive data should be 
distributed to. 

 Preferred Location - This class refers to the 

physical locations that should be considered as 
appropriate when distributing sensitive data. 

 Excluded Location - This class refers to the 

physical locations that should be avoided when 
distributing sensitive data. 

 Preferred Provider - This class refers to a 

certain trusted IaaS provider that should be 
considered as appropriate when distributing 
sensitive data. 

 Excluded Provider - This class refers to a 

certain untrusted IaaS provider that should be 
avoided. 

C. Data Fragmentation 

The Data Fragmentation class refers to the way that 

sensitive data should be fragmented in order to be distributed 
for security purposes. The relevant classes, subclasses and 
properties are detailed in Table II.  

TABLE II: DETAILS OF DATA FRAGMENTATION ELEMENTS 

Class Taxonomy 

Levels 

Prope-

rties 

Description 

Relationa

l Data 

Fragmen

tation 

  This class refers to different types 

of possible fragmentation of a 

relational database. 

  hasPriv

acyCon

straint 

This property associates a 

Relational Data Fragmentation 

instance with a string which 

restricts the way in which the 

fragmentation takes place (e.g. c1 

= {Surname, SSN}, meaning that 

the two columns should not appear 

in the same fragment). 

 Horizont

al 

Fragment

ation 

 This class refers to the 

fragmentation of a relational 

database across its rows.  

  hasFra

gRow 

This property associates a 

Horizontal Fragmentation instance 

with a non-negative integer that 

denotes the row number on the 

basis of which a Table should be 

fragmented. 

 Vertical 

Fragment

ation 

 This class refers to the 

fragmentation of a relational 

database across its columns. 

  hasFra

gColu

mn 

This property associates a Vertical 

Fragmentation instance with a 

string that denotes the column 

based on which a Table should be 

fragmented. 

 Mixed 

Fragment

ation 

 This class refers to a two-step 

fragmentation process of a 

relational database that may use 

both horizontal and vertical 

fragmentation based on certain 

conditions. 

 

 

 hasFra

gRow 

This property associates 

Horizontal Fragmentation with a 

non-negative integer that denotes 

the row based on which a Table 

should be fragmented. 

  hasFra

gColu

mn 

This property associates Vertical 

Fragmentation with a string that 

denotes the column based on which 

a Table should be fragmented. 

non- 

Relationa

l Data 

Fragmen

tation 

  This Class refers to different types 

of possible fragmentation of a non- 

relational database [11]. 

 Sharding  Sharding class refers to the details 

of different data distribution 

schemes across multiple servers, so 

each server acts as the single 

source for a subset of 

data/aggregates [11]. 

 Replicati

on 

 Replication class refers to the 

details of copying data/aggregates 

across multiple servers, so each bit 

of data can be found in multiple 

places [11]. 

 Master-

slave 

replicatio

n 

 Master-slave replication subclass 

(of Replication)  refers to the 

details of making one node the 

authoritative copy that handles 

writes while slaves synchronizing 

with the master and handling reads 

[11]. 

 Peer-to-

peer 

replicatio

n 

 Peer-to-peer subclass (of 

Replication) refers to the details of 

replication that allow writes to 

several nodes and synchronization 

between them [11]. 

We note that further details on all aspects of the Context-
aware Security Model [4], including UML class diagrams and 
model’s serialisation in RDF, can be found here: 
http://imu.ntua.gr/software/context-aware-security-model 

IV. DDE POLICY MODELING 

Our PaaS solution aims at supporting the following three 
kinds of security policy: (i) Data Encryption (DE) policies that 
specify the kind and strength of cryptographic protection 
applied to a sensitive data object. (ii) Data Fragmentation and 
Distribution (DFD) policies that specify how a sensitive data 
object is fragmented and distributed over different physical 
servers in order to protect its privacy. (iii) Access Control 
policies that determine when to permit, or deny, access to 
sensitive data by taking into account a set of contextual 
attributes linked with the actor requesting the access. Both the 
DE and DFD policies entail security controls that are 
enforceable during the bootstrapping phase of a cloud 
application. On the other hand, Access Control policies entail 
security controls that are enforceable during application 
execution time. 

In order to facilitate application developers in articulating 

effective security policies, our PaaS solution is underlain – for 

each supported policy kind – by an ontological model that 

http://imu.ntua.gr/software/context-aware-security-model


exhibits the following characteristics: (i) It is based on a 

framework of pertinent concepts, and their interrelations, that 

capture the knowledge artefacts that are required for 

specifying a policy. For example, in the case of DE policies, 

such knowledge artefacts would include the particular 

encryption algorithm used, and hence the strength and kind 

(e.g. symmetric, asymmetric, hybrid) of the encryption. This 

framework was outlined in Section III. (ii) It uses an 

extensible formalism for accommodating the aforementioned 

framework, one that unravels the representation of a policy 

from the actual code that is employed for enforcing it, 

bringing about the following benefits: (i) It permits the 

extension and instantiation of the concepts and properties of 

the aforementioned framework independently of the code of 

the application. The aim of such an extension/instantiation is 

to ground the framework to the particular needs of a given 

application. (ii) It formulates an adequate basis for reasoning 

generically, i.e. orthogonally to the code of the application, 

about the correctness of the policies, hence about the 

effectiveness of the security controls that these policies give 

rise to. 

In addition to Section’s III Context-aware Security 
Model, this paper proposes an ontological model for DE 
policies and provide a brief account of a similar model for 
DFD policies. The third kind of policy that our PaaS solution 
aims at supporting, namely Access Control policies, has been 
presented in [4].  

A. DE Policy Model 

1) DE Policy Rules. Following the XACML standard 
[12], a DE policy comprises one or more rules that may be 
abstractly described in terms of the template of Table III. 

TABLE III: DE RULE TEMPLATE 

[controlled object] is encrypted with [cryptographic type] 

This template defines the structure, in terms of relevant 
attributes, to which all DE rules in our PaaS framework 
adhere. The first attribute, namely controlled object, identifies 
the sensitive data object which is to be protected. Its values 

are drawn from the pcm:Object class of the Security 

Context Element [4]. This class encompasses a structure of 
subclasses for generically classifying the different kinds of 
objects that may be manipulated by a cloud application. The 
actual objects appear as instances of these subclasses. The 
second attribute, namely cryptographic type, identifies the 
encryption algorithm which is to be applied to the controlled 
object. It draws its values from the pdm:CryptoType class 

of the Data Distribution and Encryption model defined in 
Section III. This class encompasses a structure of subclasses 
for generically classifying encryption algorithms according to 
their kind (e.g. symmetric, asymmetric, hybrid) and strength. 
The actual algorithms appear as instances of these subclasses. 

2) Ontologically Representing DE Rules. A DE rule takes 
the form of an instance of the class pbe:Rule (see Fig. 1). 

Individual rules appear as instances of this class. Two object 
properties are attached to pbe:DERule, namely 

pbe:hasCtrldObject and pbe:hasDEElement. 

These are intended to capture the two attributes of the DE rule 
template. They associate a DE rule with instances of the 
classes pcm:Object and pdm:CryptographicType 

respectively. These instances represent the values that the two 
attributes assume, i.e. the actual controlled object which the 
rule protects (drawn from the class pcm:Object) and the 

actual encryption algorithm used (drawn from the class 
pdm:CryptographicType). 

3) Ontologically Representing DE Policies and Policy 
Sets. A DE policy takes the form of an instance of the class 
pbe:Policy. It is linked to the rules that it comprises via 

the pbe:hasDERule property. Inspired by the XACML 

standard, DE policies are grouped into policy sets. A policy 
set is modelled as an instance of the class pbe:PolicySet 

(see Fig. 2). A policy is associated with its encompassing 
policy set by means of the pbe:belongsToPolicySet 

property. A policy set may hierarchically comprise one or 
more other DE policy sets. As depicted in Fig. 2, this is 
captured by rendering the pbe:belongsToPolicySet 
property  applicable to DE policy sets too.  

Fig. 1: USDL-SEC customisation (only classes and properties used in this paper are depicted) 



B. DE Policies in Linked USDL 

Section IV.A outlined a model for the generic 
representation of DE policies. This section demonstrates how 
this model can be incorporated into the ontological framework 
provided by USDL-SEC [13] – Linked USDL’s security 
profile. By drawing upon Linked USDL, we avoid the use of 
custom ontologies for capturing data encryption policies (see 
Section V for a brief review of such ontologies). Instead, our 
approach is founded on a diffused and lightweight ontological 
framework. Moreover, the adoption of Linked USDL offers 
the following benefits [14]: (i) Linked USDL is based on 
widely-used RDF(S) vocabularies (e.g. FOAF, 
GoodRelations, SKOS) and can be easily extended to include 
other relevant existing, or new, ontologies. It therefore 
promotes knowledge-sharing and increases the reusability, 
interoperability and generality of our approach. This is 
particularly important for our work as it facilitates seamless 
integration with the vocabularies outlined Section III. (ii) 
Through the different profiles that it encompasses, Linked 
USDL provides a holistic and generic solution able to 
accommodate a wide range of relevant business details in.  

USDL-SEC provides a framework of concepts and 
properties for describing the security properties of an 
application. It includes the classes SecurityProfile, 

SecurityGoal, SecurityMechanism, and 

SecurityTechnology, along with a number of relevant 

object properties, as depicted in Fig. 1 (to reduce notational 
clutter, we avoid prefixing the usdl-sec namespace to 

USDL-SEC classes and properties). A more elaborate account 
of these classes and properties can be found in [13]. 

The DE policy model constitutes itself a particular security 
profile to which a cloud application may adhere. In this 
respect, it is formulated as an instance of the 
SecurityProfile class, namely pbe:DEProfile (see 

Fig. 1). A security profile is linked, by virtue of the object 
property hasSecurityGoal, with a security goal that 

forms an instance of the SecurityGoal class. For DE 

policies, the security goal is confidentiality. This is depicted 
in Fig. 1 by relating the instance pbe:DEProfile with a 

particular  instance (in this case pbe:DEGoal) of the  

Confifentiality class via the property 

hasSecurityGoal. The Confidentiality class is a 

sub-concept of SecurityGoal. Confidentiality is achieved 

through a suitable data encryption mechanism. To this end, 
USDL-SEC provides the concept SecurityMechanism 

which represents such a mechanism. More specifically, it 
offers the class Cryptography (which is a sub-concept of 

SecurityMechanism), an instance of which (in this case 

pbe:DEMechanism), represents the  DE mechanism that 

our PaaS framework provides. This instance is linked to the 
pbe:DEGoal instance by virtue of the property 

isImplementedBy.  

The DE mechanism modelled by the instance 
pbe:DEMechanism is implemented by a concrete 

underlying security technology. USDL-SEC provides the 
concept SecurityTechnology for the specification of 

such a technology. In our approach, the DE mechanism is 
implemented by the DE technology offered by the proposed 
PaaS framework. This is captured by the introduction of the 
pbe:PaaSDE subclass (see Fig. 1) and the instance 

pbe:DETechnology which models this DE technology. 

This instance is linked to the DE mechanism via the property 
isRealizedByTechnology. The pbe:PaaSDE 

subclass is related to the class pbe:DEPolicySet via the 

pbe:hasDEPoliceSet property. This essentially 

signifies that the DE mechanism is realised through the 
policies encompassed in one or more DE policy sets.  

C. DFD Policy Model 

The DFD policy model is derived in a manner analogous 
to the one described in Sections IV.A and IV.B above. More 
specifically, the classes and properties of this model 
ontologically express the DFD rule template of Table IV. 

TABLE IV: DFD RULE TEMPLATE 

[controlled object] is fragmented with [fragmentation scheme] 

and distributed with [distribution scheme] 

This template comprises the attributes controlled object, 
fragmentation scheme and distribution scheme. The first 
attribute is the same as the one in the DE rule template. The 
second and third attributes identify, respectively, the data 
fragmentation and distribution schemes that are to be applied 
to the controlled object. They draw, respectively, their values 
from the classes pdm:DataFragmentation and 

pdm:DataDistribution of the Data Distribution and 

Encryption model outlined in Section III. DFD policies and 
policy sets are modelled analogously to DE policies and 
policy sets, i.e. as instances of the pdfd:DFDPolicy and 

pdfd:DFDPolicySet classes respectively. Finally, the 

DFD model is incorporated into the ontological framework 
offered by USDL-SEC in a manner symmetric to the one 
described in Section IV.B for the DE model. More 
specifically, the Confidentiality class of Fig. 1 is 

replaced by the Privacy class as now the security goal is 

privacy. Similarly, the Cryptography class is replaced by 

the class pdfd:DFD which accommodates the DFD 

Fig. 2: DE ontological model 

 



mechanism that achieves this security goal. In addition, the 
classes pbe:PaaSDE and pbe:DEPolicySet are now 

replaced by the classes pdfd:PaaSDFD and 

pdfd:DFDPolicySet respectively to convey the fact that 

the DFD mechanism utilises the policies included in the DFD 
policy sets. A more elaborate account of the DFD policy 
model can be found in [15]. 

V. RELATED WORK 

A number of formalisms that advocate the use of markup 
languages for expressing policies have been proposed [12], 
[16]. Although they succeed in disentangling the 
representation of policies from the code used by an application 
for enforcing them, these formalisms lack any semantic 
agreement beyond the organisations that created them. Any 
interoperability thus hinges on custom vocabularies shared 
between the various stakeholders that participate in an 
interaction. This inevitably brings about the following 
disadvantages: (i) it restricts the portability and reusability of 
policies; (ii) it hampers the determination of potential relations 
between policies (e.g. contradicting policies, subsuming 
policies, etc.); (iii) it leads to reasoning about policy 
compliance that is dependent upon the particular vocabularies 
in which the rules of the reasoning are expressed; (iv) it 
hinders the performance of rule-based policy governance. In 
order to overcome these disadvantages, the works in [17] and 
[18] propose semantically-rich approaches to the 
representation of policies. These generally embrace 
ontologies for capturing the knowledge artefacts that underlie 
policies. In [17], the authors propose KAoS – a general-
purpose framework for managing, monitoring and enforcing a 
wide range of policies. In [18], the authors propose 
POLICYTAB for facilitating trust negotiation in Semantic 
Web environments. The aforementioned semantically-
enhanced approaches rely on bespoke, non-standards-based, 
ontologies for the representation of policies. This by definition 
restricts the generality, hence the portability and reusability of 
the policies that they represent.  In contrast, our reliance on 
Linked USDL raises this restriction whilst bringing about the 
advantages outlined in Section IV.B. 

VI. CONCLUSIONS AND FUTURE WORK 

We have presented a novel Data Distribution and 
Encryption Model for PaaS-enabled Cloud Security. This 
model conceptualises all attributes that must be considered for 
designing and bootstrapping the fragmentation, distribution 
and encryption of sensitive data that are to be stored in cloud 
infrastructures. In order to avoid the use of custom ontologies 
for capturing these attributes, the model was founded upon the 
USDL-SEC profile [13]. Our model forms part of the 
PaaSword framework – a security-by-design framework that 
aspires to develop security mechanisms for increasing the 
trustworthiness of cloud applications [3]. The next steps of 
this work include the development of dedicated mechanisms 
that make use of this modelling framework in order to aid 
developers in defining suitable Data Access Object 
annotations in the persistence layer of cloud applications. 
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