
Data Distribution and Encryption Modelling for

PaaS-enabled Cloud Security1

Yiannis Verginadis, Ioannis Patiniotakis, Gregoris

Mentzas

Institute of Communications and Computer Systems

National Technical University of Athens

Athens, Greece

{jverg,ipatini,gmentzas}@mail.ntua.gr

Simeon Veloudis and Iraklis Paraskakis

South East European Research Centre (SEERC)

International Faculty of the University of Sheffield,

CITY College

Thessaloniki, Greece

{sveloudis,iparaskakis}@seerc.org

Abstract— Some of the most valuable business benefits that

accompany the cloud adoption cannot be exploited without

addressing, first, new data security challenges posed by cloud

computing distributed nature. A promising approach for

alleviating these risks is to provide a security-by-design

framework that will assist cloud application developers in

defining appropriate context-driven policies that enhance cloud

security at design-time and enforce access control at run-time.

This paper discusses a generic and extensible formalism, called

Context-aware Security Policy Model that can be tailored to the

particular needs of different cloud applications for enhancing

the privacy and confidentiality of sensitive data.

Keywords-Context-aware security; cloud security; Data

privacy; Security by design

I. INTRODUCTION

The ever increasing adoption of Cloud computing brings
about significant benefits for enterprises and users with
respect to cost reduction, increased flexibility and business
agility. Virtualised IT resources in the cloud enable
organisations to realise significant cost savings and accelerate
the deployment of new applications, thus transforming
business and government at an unprecedented pace [1].
Nevertheless, several vulnerabilities constitute major
concerns, as their potential exploitation may result in data
confidentiality and integrity breaches [2].

Our work towards alleviating such security risks involves
an approach for assisting cloud application developers in
specifying effective security controls for sensitive data that are
manipulated by cloud applications [3]. To this end, a security-
by-design framework is currently being developed, as a PaaS
security solution, with the objective to guide and assist
developers through the process of defining the way that
sensitive data should be persisted, while setting appropriate
access control policies for safeguarding them. A prerequisite

1 © © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or

future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

for this framework is a generic and reusable modelling
formalism that will be used as the background for constructing
appropriate code-level annotations in order to materialise the
security-by-design vision. This modelling background has
two significant aspects. The first one involves all the
ontological artefacts that allow for the generic description of
classes, properties and instances that dictate the way that
sensitive data should be persisted in cloud infrastructures (e.g.
preferred or excluded locations, cryptographic protection
required, etc.). Its second part outlines an adequate access
control scheme, one which hinges upon policies that take into
account the dynamic and heterogeneous nature of cloud
environments. This mainly refers to context-aware access
control and it has been thoroughly discussed in [4].

 In this respect, this paper sets out to present the part of a
Context-aware Security Policy Model that can be considered
valuable for a security-by-design framework. Our main
objective is to shed light on the ontological reusable artefacts
that allow for the creation of bootstrapping policies that will
guide the way that sensitive data should be stored and
encrypted in the cloud. We believe that the ability to provide
generic and reusable ontological templates for expressing
such security requirements, during cloud application
development, can provide the basis for a valuable toolset for
maintaining data confidentiality and privacy in the cloud.

The rest of this paper is organized as follows. Section II
sets the high-level view of all the relevant ontological artefacts
for a security-by-design framework. Section III elaborates on
the main data distribution & encryption modelling elements
while Section IV presents the policy modelling approach for
code level annotations that enhance cloud security. Finally,
Section V presents conclusions and future work.

II. CONTEXT-AWARE SECURITY META-MODEL

In [4], we presented a meta-model that captures the main
facets of a Context-aware Security Model; a model that can
serve as the background framework for enhancing cloud
security at design-time and constructing ontological templates

978-1-5090-1445-3/16/$31.00 ©2016 IEEE (CloudSPD'16)

for access control policies, to be enforced at runtime. This
model involves elements that can be used for:

 enhancing cloud security by modelling fragmentation,

distribution and cryptographic protection features that

certain data artefacts must have. This refers to the Data
Distribution and Encryption Element

(DDE) that we thoroughly discuss in this paper.

 granting or denying access to sensitive data on the basis

of dynamically-evolving contextual attributes [4]. This

includes the Security Context Element, the

Permission Element and the Context

Pattern Element.

According to this meta-model, instances of these
aforementioned facets formulate the Context-aware

Security Model. Based on this model, we are currently

developing a security-by-design framework called PaaSword
[3] that allows cloud application developers to annotate their
code in order to denote the way sensitive data should be
bootstrapped (e.g. fragments, distribution locations, excluded
providers, encryption etc.) and automatically produce
enforceable context-aware access control policies. Next, we
discuss only the context model facets that are relevant to cloud
security enhancement at design time.

III. DATA DISTRIBUTION & ENCRYPTION ELEMENTS

The DDE Elements are a significant part of the Context-
aware Security Model [4] and refers to the details of
encrypting data artefacts, fragmenting and distributing them
in a way that even if the encryption key is somehow
intercepted by an adversary, the sensitive information is still
protected. The DDE elements comprise the following three
top-level ontological concepts:

 Cryptographic Type - This class refers to the

cryptographic process that should be adopted for
encoding sensitive data.

 Data Distribution - This class captures

aspects of the data distribution required for
enhancing the security of sensitive data elements.

 Data Fragmentation - This class refers to the

details about the way data should be fragmented in
order to be distributed for security purposes.

For each of these top-level classes we provide details with
respect to their sub-classes and the identified properties
required for creating meaningful instances of the model.
These instances will be used (see Section IV) for guiding the
bootstrapping of sensitive data artefacts with respect to how,
where and with what level of protection these data should be
persisted. We note that dedicated software mechanisms are
currently being developed for allowing the Administrator, the
Product Manager or, depending on the organisation’s needs,
even the Cloud Application developer to update and
instantiate the Context-aware Security Model.

TABLE I: DETAILS OF DATA DISTRIBUTION ELEMENTS

Class

Taxonomy

Levels

Proper-

ties

Description

Symmetric Refers to the details of the chosen

cryptographic algorithm that uses the same

cryptographic key for both encryption of

plaintext and decryption of cipher text (e.g.

AES [6], RC4 [7]).

 hasSymm

etricKey

Size

This property associates Symmetric with a

positive integer that expresses the length of

the key used for encryption/decryption (e.g.

128, 192 or 256 bits)

 hasSymm

etricBloc

kSize

This property associates Symmetric with a

positive integer that expresses how long is

the fixed length string of bits on which the

cypher operates (e.g. 128 bits).

Asymmetric Refers to the details of the chosen

cryptographic algorithm that uses different

cryptographic keys for encryption (public

key) of plaintext and decryption of cipher

text (private key) (e.g. RSA [8], ECC [9]).

 hasAsym

metricKe

ySize

This property associates an Asymmetric

instance with a positive integer that

expresses the length of the key used for

encryption/decryption (e.g. 1,024, 4,096 bit)

 hasCurve This property associates an Asymmetric

instance with a string that denotes the

algebraic structure of elliptic curves used

(e.g. P-192, P-224, P-256, P-384, P-521).

Specifically, these refer to the sizes of

primes used for recommending elliptic

curves.

Hybrid This class refers to the details of the chosen

cryptographic algorithm that might combine

symmetric-key and public-key

cryptography (e.g. OpenPGP [10]). This is

a subclass of both Symmetric and

Asymmetric classes.

A. Cryptographic Type

The cryptographic protection of sensitive data to be
managed by dedicated cloud application is discussed in terms
of this ontological class. Table I presents the details of the
Cryptographic Type element, where core classes and

sub-classes are described along with their main associated
properties. The Cryptographic Type is associated with

the hasModeofOperation property. This property

associates the Cryptographic Type with a string that

denotes how to repeatedly apply a cipher's single-block
operation to securely transform amounts of data larger than a
block (e.g. ECB, CBC, CFB, OFB, CTR [5]).

B. Data Distribution

The Data Distribution class involves all the

aspects required for controlling how the sensitive data
artefacts should be distributed across different datastores in
the cloud. This involves the following subclasses:

 Distribution Metric - This class quantifies

the data distribution required for enhancing the
security of sensitive information. It involves the
properties numberOfVMs, numberOfServers,

numberOfPhysicalLocations for

associating a Distribution Metric instance

with a positive integer that denotes the number of
different VMs, servers and physical locations,
respectively, that the sensitive data should be
distributed to.

 Preferred Location - This class refers to the

physical locations that should be considered as
appropriate when distributing sensitive data.

 Excluded Location - This class refers to the

physical locations that should be avoided when
distributing sensitive data.

 Preferred Provider - This class refers to a

certain trusted IaaS provider that should be
considered as appropriate when distributing
sensitive data.

 Excluded Provider - This class refers to a

certain untrusted IaaS provider that should be
avoided.

C. Data Fragmentation

The Data Fragmentation class refers to the way that

sensitive data should be fragmented in order to be distributed
for security purposes. The relevant classes, subclasses and
properties are detailed in Table II.

TABLE II: DETAILS OF DATA FRAGMENTATION ELEMENTS

Class Taxonomy

Levels

Prope-

rties

Description

Relationa

l Data

Fragmen

tation

 This class refers to different types

of possible fragmentation of a

relational database.

 hasPriv

acyCon

straint

This property associates a

Relational Data Fragmentation

instance with a string which

restricts the way in which the

fragmentation takes place (e.g. c1

= {Surname, SSN}, meaning that

the two columns should not appear

in the same fragment).

 Horizont

al

Fragment

ation

 This class refers to the

fragmentation of a relational

database across its rows.

 hasFra

gRow

This property associates a

Horizontal Fragmentation instance

with a non-negative integer that

denotes the row number on the

basis of which a Table should be

fragmented.

 Vertical

Fragment

ation

 This class refers to the

fragmentation of a relational

database across its columns.

 hasFra

gColu

mn

This property associates a Vertical

Fragmentation instance with a

string that denotes the column

based on which a Table should be

fragmented.

 Mixed

Fragment

ation

 This class refers to a two-step

fragmentation process of a

relational database that may use

both horizontal and vertical

fragmentation based on certain

conditions.

 hasFra

gRow

This property associates

Horizontal Fragmentation with a

non-negative integer that denotes

the row based on which a Table

should be fragmented.

 hasFra

gColu

mn

This property associates Vertical

Fragmentation with a string that

denotes the column based on which

a Table should be fragmented.

non-

Relationa

l Data

Fragmen

tation

 This Class refers to different types

of possible fragmentation of a non-

relational database [11].

 Sharding Sharding class refers to the details

of different data distribution

schemes across multiple servers, so

each server acts as the single

source for a subset of

data/aggregates [11].

 Replicati

on

 Replication class refers to the

details of copying data/aggregates

across multiple servers, so each bit

of data can be found in multiple

places [11].

 Master-

slave

replicatio

n

 Master-slave replication subclass

(of Replication) refers to the

details of making one node the

authoritative copy that handles

writes while slaves synchronizing

with the master and handling reads

[11].

 Peer-to-

peer

replicatio

n

 Peer-to-peer subclass (of

Replication) refers to the details of

replication that allow writes to

several nodes and synchronization

between them [11].

We note that further details on all aspects of the Context-
aware Security Model [4], including UML class diagrams and
model’s serialisation in RDF, can be found here:
http://imu.ntua.gr/software/context-aware-security-model

IV. DDE POLICY MODELING

Our PaaS solution aims at supporting the following three
kinds of security policy: (i) Data Encryption (DE) policies that
specify the kind and strength of cryptographic protection
applied to a sensitive data object. (ii) Data Fragmentation and
Distribution (DFD) policies that specify how a sensitive data
object is fragmented and distributed over different physical
servers in order to protect its privacy. (iii) Access Control
policies that determine when to permit, or deny, access to
sensitive data by taking into account a set of contextual
attributes linked with the actor requesting the access. Both the
DE and DFD policies entail security controls that are
enforceable during the bootstrapping phase of a cloud
application. On the other hand, Access Control policies entail
security controls that are enforceable during application
execution time.

In order to facilitate application developers in articulating

effective security policies, our PaaS solution is underlain – for

each supported policy kind – by an ontological model that

http://imu.ntua.gr/software/context-aware-security-model

exhibits the following characteristics: (i) It is based on a

framework of pertinent concepts, and their interrelations, that

capture the knowledge artefacts that are required for

specifying a policy. For example, in the case of DE policies,

such knowledge artefacts would include the particular

encryption algorithm used, and hence the strength and kind

(e.g. symmetric, asymmetric, hybrid) of the encryption. This

framework was outlined in Section III. (ii) It uses an

extensible formalism for accommodating the aforementioned

framework, one that unravels the representation of a policy

from the actual code that is employed for enforcing it,

bringing about the following benefits: (i) It permits the

extension and instantiation of the concepts and properties of

the aforementioned framework independently of the code of

the application. The aim of such an extension/instantiation is

to ground the framework to the particular needs of a given

application. (ii) It formulates an adequate basis for reasoning

generically, i.e. orthogonally to the code of the application,

about the correctness of the policies, hence about the

effectiveness of the security controls that these policies give

rise to.

In addition to Section’s III Context-aware Security
Model, this paper proposes an ontological model for DE
policies and provide a brief account of a similar model for
DFD policies. The third kind of policy that our PaaS solution
aims at supporting, namely Access Control policies, has been
presented in [4].

A. DE Policy Model

1) DE Policy Rules. Following the XACML standard
[12], a DE policy comprises one or more rules that may be
abstractly described in terms of the template of Table III.

TABLE III: DE RULE TEMPLATE

[controlled object] is encrypted with [cryptographic type]

This template defines the structure, in terms of relevant
attributes, to which all DE rules in our PaaS framework
adhere. The first attribute, namely controlled object, identifies
the sensitive data object which is to be protected. Its values

are drawn from the pcm:Object class of the Security

Context Element [4]. This class encompasses a structure of
subclasses for generically classifying the different kinds of
objects that may be manipulated by a cloud application. The
actual objects appear as instances of these subclasses. The
second attribute, namely cryptographic type, identifies the
encryption algorithm which is to be applied to the controlled
object. It draws its values from the pdm:CryptoType class

of the Data Distribution and Encryption model defined in
Section III. This class encompasses a structure of subclasses
for generically classifying encryption algorithms according to
their kind (e.g. symmetric, asymmetric, hybrid) and strength.
The actual algorithms appear as instances of these subclasses.

2) Ontologically Representing DE Rules. A DE rule takes
the form of an instance of the class pbe:Rule (see Fig. 1).

Individual rules appear as instances of this class. Two object
properties are attached to pbe:DERule, namely

pbe:hasCtrldObject and pbe:hasDEElement.

These are intended to capture the two attributes of the DE rule
template. They associate a DE rule with instances of the
classes pcm:Object and pdm:CryptographicType

respectively. These instances represent the values that the two
attributes assume, i.e. the actual controlled object which the
rule protects (drawn from the class pcm:Object) and the

actual encryption algorithm used (drawn from the class
pdm:CryptographicType).

3) Ontologically Representing DE Policies and Policy
Sets. A DE policy takes the form of an instance of the class
pbe:Policy. It is linked to the rules that it comprises via

the pbe:hasDERule property. Inspired by the XACML

standard, DE policies are grouped into policy sets. A policy
set is modelled as an instance of the class pbe:PolicySet

(see Fig. 2). A policy is associated with its encompassing
policy set by means of the pbe:belongsToPolicySet

property. A policy set may hierarchically comprise one or
more other DE policy sets. As depicted in Fig. 2, this is
captured by rendering the pbe:belongsToPolicySet
property applicable to DE policy sets too.

Fig. 1: USDL-SEC customisation (only classes and properties used in this paper are depicted)

B. DE Policies in Linked USDL

Section IV.A outlined a model for the generic
representation of DE policies. This section demonstrates how
this model can be incorporated into the ontological framework
provided by USDL-SEC [13] – Linked USDL’s security
profile. By drawing upon Linked USDL, we avoid the use of
custom ontologies for capturing data encryption policies (see
Section V for a brief review of such ontologies). Instead, our
approach is founded on a diffused and lightweight ontological
framework. Moreover, the adoption of Linked USDL offers
the following benefits [14]: (i) Linked USDL is based on
widely-used RDF(S) vocabularies (e.g. FOAF,
GoodRelations, SKOS) and can be easily extended to include
other relevant existing, or new, ontologies. It therefore
promotes knowledge-sharing and increases the reusability,
interoperability and generality of our approach. This is
particularly important for our work as it facilitates seamless
integration with the vocabularies outlined Section III. (ii)
Through the different profiles that it encompasses, Linked
USDL provides a holistic and generic solution able to
accommodate a wide range of relevant business details in.

USDL-SEC provides a framework of concepts and
properties for describing the security properties of an
application. It includes the classes SecurityProfile,

SecurityGoal, SecurityMechanism, and

SecurityTechnology, along with a number of relevant

object properties, as depicted in Fig. 1 (to reduce notational
clutter, we avoid prefixing the usdl-sec namespace to

USDL-SEC classes and properties). A more elaborate account
of these classes and properties can be found in [13].

The DE policy model constitutes itself a particular security
profile to which a cloud application may adhere. In this
respect, it is formulated as an instance of the
SecurityProfile class, namely pbe:DEProfile (see

Fig. 1). A security profile is linked, by virtue of the object
property hasSecurityGoal, with a security goal that

forms an instance of the SecurityGoal class. For DE

policies, the security goal is confidentiality. This is depicted
in Fig. 1 by relating the instance pbe:DEProfile with a

particular instance (in this case pbe:DEGoal) of the

Confifentiality class via the property

hasSecurityGoal. The Confidentiality class is a

sub-concept of SecurityGoal. Confidentiality is achieved

through a suitable data encryption mechanism. To this end,
USDL-SEC provides the concept SecurityMechanism

which represents such a mechanism. More specifically, it
offers the class Cryptography (which is a sub-concept of

SecurityMechanism), an instance of which (in this case

pbe:DEMechanism), represents the DE mechanism that

our PaaS framework provides. This instance is linked to the
pbe:DEGoal instance by virtue of the property

isImplementedBy.

The DE mechanism modelled by the instance
pbe:DEMechanism is implemented by a concrete

underlying security technology. USDL-SEC provides the
concept SecurityTechnology for the specification of

such a technology. In our approach, the DE mechanism is
implemented by the DE technology offered by the proposed
PaaS framework. This is captured by the introduction of the
pbe:PaaSDE subclass (see Fig. 1) and the instance

pbe:DETechnology which models this DE technology.

This instance is linked to the DE mechanism via the property
isRealizedByTechnology. The pbe:PaaSDE

subclass is related to the class pbe:DEPolicySet via the

pbe:hasDEPoliceSet property. This essentially

signifies that the DE mechanism is realised through the
policies encompassed in one or more DE policy sets.

C. DFD Policy Model

The DFD policy model is derived in a manner analogous
to the one described in Sections IV.A and IV.B above. More
specifically, the classes and properties of this model
ontologically express the DFD rule template of Table IV.

TABLE IV: DFD RULE TEMPLATE

[controlled object] is fragmented with [fragmentation scheme]

and distributed with [distribution scheme]

This template comprises the attributes controlled object,
fragmentation scheme and distribution scheme. The first
attribute is the same as the one in the DE rule template. The
second and third attributes identify, respectively, the data
fragmentation and distribution schemes that are to be applied
to the controlled object. They draw, respectively, their values
from the classes pdm:DataFragmentation and

pdm:DataDistribution of the Data Distribution and

Encryption model outlined in Section III. DFD policies and
policy sets are modelled analogously to DE policies and
policy sets, i.e. as instances of the pdfd:DFDPolicy and

pdfd:DFDPolicySet classes respectively. Finally, the

DFD model is incorporated into the ontological framework
offered by USDL-SEC in a manner symmetric to the one
described in Section IV.B for the DE model. More
specifically, the Confidentiality class of Fig. 1 is

replaced by the Privacy class as now the security goal is

privacy. Similarly, the Cryptography class is replaced by

the class pdfd:DFD which accommodates the DFD

Fig. 2: DE ontological model

mechanism that achieves this security goal. In addition, the
classes pbe:PaaSDE and pbe:DEPolicySet are now

replaced by the classes pdfd:PaaSDFD and

pdfd:DFDPolicySet respectively to convey the fact that

the DFD mechanism utilises the policies included in the DFD
policy sets. A more elaborate account of the DFD policy
model can be found in [15].

V. RELATED WORK

A number of formalisms that advocate the use of markup
languages for expressing policies have been proposed [12],
[16]. Although they succeed in disentangling the
representation of policies from the code used by an application
for enforcing them, these formalisms lack any semantic
agreement beyond the organisations that created them. Any
interoperability thus hinges on custom vocabularies shared
between the various stakeholders that participate in an
interaction. This inevitably brings about the following
disadvantages: (i) it restricts the portability and reusability of
policies; (ii) it hampers the determination of potential relations
between policies (e.g. contradicting policies, subsuming
policies, etc.); (iii) it leads to reasoning about policy
compliance that is dependent upon the particular vocabularies
in which the rules of the reasoning are expressed; (iv) it
hinders the performance of rule-based policy governance. In
order to overcome these disadvantages, the works in [17] and
[18] propose semantically-rich approaches to the
representation of policies. These generally embrace
ontologies for capturing the knowledge artefacts that underlie
policies. In [17], the authors propose KAoS – a general-
purpose framework for managing, monitoring and enforcing a
wide range of policies. In [18], the authors propose
POLICYTAB for facilitating trust negotiation in Semantic
Web environments. The aforementioned semantically-
enhanced approaches rely on bespoke, non-standards-based,
ontologies for the representation of policies. This by definition
restricts the generality, hence the portability and reusability of
the policies that they represent. In contrast, our reliance on
Linked USDL raises this restriction whilst bringing about the
advantages outlined in Section IV.B.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a novel Data Distribution and
Encryption Model for PaaS-enabled Cloud Security. This
model conceptualises all attributes that must be considered for
designing and bootstrapping the fragmentation, distribution
and encryption of sensitive data that are to be stored in cloud
infrastructures. In order to avoid the use of custom ontologies
for capturing these attributes, the model was founded upon the
USDL-SEC profile [13]. Our model forms part of the
PaaSword framework – a security-by-design framework that
aspires to develop security mechanisms for increasing the
trustworthiness of cloud applications [3]. The next steps of
this work include the development of dedicated mechanisms
that make use of this modelling framework in order to aid
developers in defining suitable Data Access Object
annotations in the persistence layer of cloud applications.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the EU's H2020 programme under grant agreement No
644814, the PaaSword project (www.paasword.eu).

REFERENCES

[1] Group, T. T., 2013. The Notorious Nine. Cloud Computing
Top Threats in 2013. Cloud Security Aliance (CSA).

[2] The Notorious Nine Cloud Computing Top Threats in 2013,
Cloud Security Alliance, 2013.

[3] Y. Verginadis, A. Michalas, P. Gouvas, G. Schiefer, G. Hübsch
and I. Paraskakis, “PaaSword: A Holistic Data Privacy and
Security by Design Framework for Cloud Services,” in
Proceedings of the 5th International Conference on Cloud
Computing and Services Science (CLOSER 2015), Lisbon,
Portugal, 2015.

[4] S. Veloudis, Y. Verginadis, I. Patiniotakis, I. Paraskakis and G.
Mentzas. Context-aware Security Models for PaaS-enabled
Access Control. 6th International Conference on Cloud
Computing and Services Science (CLOSER 2016), Rome, Italy,
April 23-25, 2016.

[5] NIST Computer Security Division's (CSD) Security
Technology Group (STG) (2013). "Block cipher modes".
Cryptographic Toolkit. NIST. Retrieved April 12, 2013.

[6] Daemen, Joan; Rijmen, Vincent (March 9, 2003). "AES
Proposal: Rijndael" (PDF). National Institute of Standards and
Technology. p. 1. Retrieved 21 February 2013.

[7] P. Prasithsangaree & P. Krishnamurthy (2003). "Analysis of
Energy Consumption of RC4 and AES Algorithms in Wireless
LANs" (PDF). Archived from the original (PDF) on 3
December 2013.

[8] Diffie, W.; Hellman, M.E. (November 1976). "New directions
in cryptography". IEEE Transactions on Information Theory
22 (6): 644–654. doi:10.1109/TIT.1976.1055638. ISSN 0018-
9448.

[9] Koblitz, N. (1987). "Elliptic curve cryptosystems".
Mathematics of Computation 48 (177): 203–209.
doi:10.2307/2007884. JSTOR 2007884.

[10] Zimmermann, Philip (1995). PGP Source Code and Internals.
MIT Press. ISBN 0-262-24039-4.

[11] Sadalage, P. J., Fowler, M. (2012). NoSQL Distilled: A Brief
Guide to the Emerging World of Polyglot Persistence.
Addison-Wesley.

[12] eXtensible Access Control Markup Language (XACML)
Version 3.0. 22 January 2013. OASIS Standard.
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.html

[13] Linked USDL, http://www.linked-usdl.org/

[14] Cardoso, J., Pedrinaci, C., Leidig, T.: Linked USDL: a
Vocabulary for Web-scale Service Trading. In 11th Extended
Semantic Web Conference (ESWC) (2014)

[15] PaaSword Deliverable 2.2. https://www.paasword.eu/deliverables/

[16] Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder
Policy Specification Language. In Sloman, M., Lobo, J., Lupu,
E. (eds.) Proceedings of the International Workshop on
Policies for Distributed Systems and Networks (POLICY '01),
pp. 18--38, Springer-Verlag, London (2000)

[17] Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A.,
Dalton, J., and Aitken, S.: KAoS Policy Management for
Semantic Web Services. IEEE Intel. Sys. 19, 4, 32--41 (2004)

[18] Nejdl, W., Olmedilla, D., Winslett, M, Zhang. C.C.: Ontology-
Based policy specification and management. In Gómez-Pérez,
A. and Euzenat, J. (eds.) ESWC'05, pp. 290-302, Springer-
Verlag, Berlin, Heidelberg (2005)

