
Ontological Templates for Modelling Security Policies in
Cloud Environments

Simeon Veloudis and Iraklis Paraskakis
South East European Research Centre (SEERC)

The University of Sheffield International Faculty, CITY College
Thessaloniki, Greece

(+30)2310253477
{sveloudis, iparaskakis}@seerc.org

ABSTRACT
It is generally conceded that by embracing the cloud computing
paradigm enterprises are able to boost their agility and productivity
whilst realising significant cost savings. However, many
enterprises are reluctant to adopt cloud services for supporting their
critical operations due to security and privacy concerns. One way
to alleviate these concerns is to devise a set of policies that infuse
adequate security controls in cloud services. However, the
heterogeneous nature of these services, together with the
dynamicity inherent in cloud environments, hinders the formulation
of an effective and interoperable set of policies that is suitable for
the underlying domain of application. To this end, this work
proposes an approach to the construction of ontological templates
for the semantic representation of policies. These templates are
capable of capturing the knowledge that must be infused into a
policy in order for it to adequately take into account the needs of
the underlying domain of application in which it is to be enforced.

Categories and Subject Descriptors
• Software and its engineering ~ Cloud computing
• Information systems ~ Semantic web description languages
• Security and Privacy ~ Web application security.

Keywords
Cloud computing; cloud security; security policies; service
description languages; Linked USDL

1. INTRODUCTION
Enterprises increasingly embrace the cloud computing paradigm

in order to gain access to a wide range of infrastructure, platform,
and application resources that are abstracted as services and
delivered remotely by diverse providers [4]. The main force that
fuels this trend is the significant cost savings that these services
instigate, as well as the acceleration of the development and
deployment of new applications that boosts innovation and
productivity. However, due to security concerns, many enterprises

are reluctant to move their critical operations and sensitive data to
the cloud [24] [5]. One way to alleviate these concerns is to devise
suitable policies that infuse adequate security controls in cloud
services. For these policies to be effective, however, they must
possess the following desirable characteristics. Firstly, they must
cater for the particular needs of the underlying domain of
application in which they are to be used. Secondly, they must take
into account the inherently dynamic and unpredictable nature of
cloud environments and the heterogeneity of cloud services.
Thirdly, they must be understandable, hence applicable, across the
diverse administrative domains that a cloud environment may span.
Last but not least, they must lend themselves to automated checks
concerning their correctness, hence their effectiveness. These
characteristics call for the introduction of a novel framework for
the representation of security policies, one that generically provides
the means to express the knowledge that dwells in security policies,
whilst advocating a clear separation of concerns by unravelling the
representation of policies from the code that is ultimately employed
for enforcing them.

This work introduces such a framework. More specifically, it
proposes a novel approach to the construction of a set of ontological
templates that are capable of semantically capturing policies in
dynamic cloud environments. In order to model the knowledge that
is reflected in policies, the proposed templates are underlain by an
ontological description of a set of concepts, and the properties
thereof, that are relevant to the particular domain of application.
For example, concerning access control policies in dynamic cloud
environments, an ontological description of such concepts as
‘access location’, ‘access time’, ‘access subject’ and ‘type of
access’ (e.g. ‘read’ or ‘write’), would be required.

One of the main strengths of our approach is that the proposed
templates are formulated using an extensible RDF vocabulary that
is amenable to automated reasoning about the compliance of
policies with a set of constraints regarding their content and
structure. Such a vocabulary therefore lays the foundation for
building a higher-level ontology capable of accommodating these
constraints through the use of a more verbose (than RDF)
formalism such as OWL 2 [12]. This bears the advantage that the
constraints are expressible in the same representation as the actual
policies that they regulate, namely as RDF graphs, and therefore
facilitates the construction of a policy validator – a mechanism
capable of determining the validity of the policies with respect to
these constraints.

Although the proposed templates are applicable to a broad range
of security policies, this work focuses on the security policies
encountered in the PaaSword project [15]. PaaSword aspires to
provide a security-by-design solution, essentially a PaaS offering,
that facilitates developers in formulating suitable security policies
for dynamic cloud environments. More specifically, PaaSword

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
PCI '16, November 10 - 12, 2016, Patras, Greece
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4789-1/16/11 $15.00
DOI: http://dx.doi.org/10.1145/3003733.3003796

aims at supporting three types of policy: (i) Data Encryption
policies that articulate the kind of cryptographic protection that a
sensitive data object must enjoy in the cloud; (ii) Data
Fragmentation and Distribution (DFD) policies that specify the
way in which sensitive data objects, e.g. columns in a relational
table, are fragmented and distributed across different cloud servers
for privacy reasons; (iii) Attribute-Based Access Control (ABAC)
policies that articulate when to allow, or forbid, access to sensitive
data in the cloud on the basis of a broad range of relevant contextual
attributes.

The rest of this paper is structured as follows. Section 2 presents
our generic approach to the representation of security policies.
Section 3 outlines the construction of an ontological template for
capturing PaaSword’s DFD policies. Section 4 summarises related
work and Section 5 presents conclusions and future work.

2. A GENERIC APPROACH TO
SECURITY POLICY REPRESENTATION

We propose an approach to the semantic representation of diverse
kinds of security policy. Our approach accurately captures the
knowledge underpinning each policy kind, whilst it disentangles
the representation of policies from the actual code employed for
enforcing them. At the same time, it lends itself to, and therefore
paves the way for, a series of correctness checks that are performed
automatically by a policy validator. Although our focus in this work
is on the policy kinds supported by the PaaSword project, namely
Data Encryption policies, DFD policies and ABAC policies, the
proposed approach is equally applicable to any other kind of
security policy.

As depicted in Figure 1, our approach comprises two main
phases. In the first phase, the ontological framework of concepts
and properties offered by USDL-SEC, Linked USDL’s security
profile [10], is reified giving rise to three distinct profiles, one for
each kind of security policy considered, namely the Encryption
profile, the DFD profile and the ABAC profile. In the second phase,
each profile is extended by incorporating a customised version of
the ontological meta-model depicted in Figure 1. This meta-model
forms essentially an abstract template that can be suitably extended
(see Section 3.2 for more details) in order to capture the semantics
of a particular policy kind.

The extension that takes place in the second phase aims at
encriching each profile devised in the first phase with a suitable
framework of concepts and properties that accurately captures the

semantics of the corresponding policy kind. In this respect, it
essentially transforms each profile into an ontological template
capable of accommodating all those knowledge artefacts that are
required for describing policies of the particular kind. For instance,
regarding Data Encryption policies, the profile would be extended
with concepts and properties for accommodating such knowledge
artefacts as the particular encryption kind used (e.g. symmetric,
asymmetric, hybrid), the particular encryption algorithm applied,
the encryption strength, etc. Regarding DFD policies, the profile
would be extended with concepts and properties for
accommodating such knowledge artefacts as the particular data
fragmentation scheme used (e.g. vertical or horizontal
fragmentation), as well as the particular data distribution scheme
adopted (e.g. preferred or fobidden data storage locations, preferred
of forbidden data storage providers, etc.). Finally, regarding ABAC
policies, the profile would be extended with concepts and
properties for accommocdating such knowledge artefacts as the
identity of the subject requesting the access, the actual action
requested (e.g. read/write), the data object on which the action is
requested, the location of access, the time of access, etc.

The reifications and extensions that take place in the two phases
of the proposed approach are further elaborated in Section 3. A
brief discussion that motivates our choice to adopt Linked USDL
as the basis of our approach, as well as an outline of the concepts
and properties of the ontological framework offered by USDL-SEC
are, however, first in order.

2.1 Linked USDL
Linked USDL [10] is a remodelled version of USDL [1] which

draws upon numerous research efforts in the area of Semantic Web
Services and business ontologies [2], [3]. It capitalises on the
principles of Linked Data in order to support its use in a ‘web of
data’. Specifications are expressed in an RDF vocabulary [16] that
provides sufficient support for the generic description of cloud
services. Linked USDL consists of a Core schema and a number of
extension schemata, or profiles, that address diverse aspects of a
cloud service. In our work, we are interested in the Security profile
(USDL-SEC) which offers the foundation for the generic
representation of a broad range of security policies. Our reliance on
Linked USDL brings about the following benefits [3]. (i) Linked
USDL utilises widely-used RDF vocabularies, such as
GoodRelations [8], SKOS [18], and FOAF [20] in order to promote
the sharing of knowledge whilst increasing the interoperability,
hence the reusability, of our policies. (ii) By incorporating a set of
different profiles, Linked USDL offers a holistic and generic
solution that conveniently captures a wide range of business details
that are required for accurately describing our policies. (iii) Linked
USDL is designed to be easily extensible through linking to further
existing, or new, ontologies. This crucially facilitates the seamless
integration of our ontological templates with the vocabularies
devised in [13] for describing the concepts involved in the
definition of the PaaSword security policies (see Section 3 for more
details).

2.2 USDL-SEC
As depicted in Figure 2, USDL-SEC defines the following top-

level classes: Security Profile, Security Goal, Security Mechanism,
Security Technology and Security Realization Type. The Security
Profile class, as its name suggests, introduces a set of security
profiles to which a cloud application potentially adheres. A security
profile is invariably related to a security goal. This brings about the
Security Goal concept which comprises a set of sub-concepts that
capture particular security goals. A complete list of all such security
goals is depicted in Figure 2. A security goal is tied to the security
mechanism in terms of which it is realised. This introduces the

Figure 1. Approach to security policy representation

Security Mechanism class which incorporates sub-concepts for
capturing different types of security mechanisms – the list of all the
security mechanism types supported by USDL-SEC is illustrated in
Figure 2. A security mechanism is in turn tied to the security
technology that implements it, giving rise to the Security
Technology concept. Furthermore, a security mechanism is related
to the layer of the ISO/OSI protocol stack at which it is realised (for
example, the Application or Network layer). This brings about the
Security Realization Type class that specifies this layer.

The concepts and their relations defined above are declaratively
captured in terms of ontological classes and object properties
respectively1. More specifically, the following object properties are
introduced: hasSecurityGoal that interrelates a security
profile with its security goal; isImplementedBy that
interrelates a security goal with the mechanism that realises it;
isRealizedByTechnology that interrelates a security
mechanism with the underlying technology that implements it;
hasSecurityRealizationType that interrelates a security
mechanism with the particular ISO/OSI layer at which it operates.
The fact that a concept constitutes a sub-concept of another concept
is expressed through the use of the property skos:broader [18].

The above framework of concepts and their associations lays the
foundations for constructing ontological templates that are suitable
for the semantic characterisation of the security policies that the
PaaSword project aspires to sustain. Section 3 elaborates on how
this framework is reified in order to give rise to an ontological
template for the expression of DFD policies. Analogous accounts
apply to the other two kinds of policy, namely Data Encryption
policies and ABAC policies; the interested reader is referred to [14]
for more details.

1 USDL-SEC classes and properties are defined under the usdl-

sec namespace that is omitted here to reduce notational clutter.

3. CONSTRUCTING THE DFD
ONTOLOGICAL TEMPLATE

As outlined at the beginning of Section 2, the DFD ontological
template is constructed through a two-phase process. In the first
phase, the framework of classes and properties offered by USDL-
SEC is reified to give rise to the DFD profile. In the second phase,
the DFD profile is extended with additional concepts and properties
that capture those knowledge artefacts that are required for
accurately expressing DFD policies. These reifications and
extensions are further elaborated below.

3.1 Reifying USDL-SEC: The DFD Profile
The reification of the concepts and properties offered by USDL-

SEC proceeds either by using existing classes that already appear
in the USDL-SEC vocabulary (e.g. the Security Goal concept is
reified in terms of its narrower Privacy concept – see Figure 3), or
by introducing new concepts along with their associations.

The DFD profile is itself represented as an instance of the class
SecurityProfile, namely the instance
pdfd:DFDProfile2 (see Figure 3). The security goal of this
profile is privacy. As depicted in Figure 3, this is modelled by
reifying the SecurityGoal class in terms of the USDL-SEC
Privacy class and defining an instance of this class, namely
pdfd:DFDGoal, to represent the particular privacy goal. This
instance is then associated, through the property
hasSecurityGoal, with the instance pdfd:DFDProfile.

The privacy goal is implemented by a security mechanism,
namely the DFD mechanism. This is captured by reifying the
SecurityMechanism class in terms of the class pdfd:DFD
and defining an instance in this class, namely
pdfd:DFDMechanism, which represents the actual DFD
mechanism. This instance is then associated, through the property
isImplementedBy, with the instance pdfd:DFDGoal which,
as described above, represents the security goal. Note that the class
pdfd:DFD represents a new concept specifically introduced into
USDL-SEC for modelling DFD policies.

The DFD mechanism operates at the Application layer of the
ISO/OSI protocol. This is captured by refining the
SecurityRealizationType class in terms of the USDL-
SEC InUsageType class and introducing an instance of this
class, namely pdfd:DFDType. This instance is then associated,
through the property hasSecurityRealizationType with
the instance pdfd:DFDMechanism that represents the DFD
mechanism.

Finally, the DFD mechanism is realised in terms of a particular
technology, one that relies on a set of DFD policies. In order to
model such a security technology, a number of new concepts, along
with their associations, are introduced. These are the
pdfd:PaaSwordDFD concept, which accommodates the security
technology, and the pdfd:DFDPolicySet concept, which
bundles together the DFD policies on which the security
technology relies. In particular, the security technology takes the
form of the instance pdfd:DFDTechnology (see Figure 3) and
is associated with the DFD mechanism through the USDL-SEC
property isRealizedByTechnology. The
pdfd:DFDPolicySet concept is associated with the security
technology through the property pdfd:hasDFDPolicySet.

2 The namespace pdfd (stands for “PaaSword DFD”) is where all
DFD-related concepts and properties are defined.

Figure 2. USDL-SEC

This concept essentially extends the DFD profile with a generic
ontological template capable of accommodating all those
knowledge artefacts that are required for describing DFD policies.
This ontological template is further elaborated in Section 3.2
below.

3.2 Extending the DFD Profile: The DFD
Ontological Template

The DFD ontological template is a customised version of the
ontological meta-model depicted in Figure 1. In fact, in our
approach, any ontological template that aspires to semantically
describe a particular kind of security policy forms a customised
version of this meta-model. Section 3.2.1 below outlines the
concepts and properties that make up this meta-model; Sections
3.2.2, 3.2.3 and 3.2.4 describe how this meta-model is customised
in order to give rise to the DFD ontological template. Analogous
accounts apply for the ontological templates of the other two kinds
of PaaSword policy, namely the Data Encryption ontological
template and the ABAC ontological template depicted in Figure 1;
the interested reader is referred to [14] for more details.

3.2.1 Ontological Meta-Model
Following an approach inspired by the XACML standard [7],

three levels of structural elements are discerned for the ontological
meta-model: Rules, Policies and Policy sets (see Figure 1). A rule
is the most elementary structural element and the basic building
block of policies. In this respect, rules are the carriers of the core
logic of policies. They are defined as instances of the class
pwd:Rule3.

A policy comprises one or more rules and is represented as an
instance of the class pwd:Policy (see Figure 1). A policy is
associated with its constituent rules through the object property
pwd:hasRule (see Figure 1). Policies are also grouped into
policy sets. A policy set is modelled as an instance of the class
pwd:PolicySet. A policy is associated with its containing
policy set through the object property

3 The namespace pwd is where all concepts and properties related

to the ontological meta-model are defined.

pwd:belongsToPolicySet (see Figure 1). A policy set may
exhibit a hierarchical structure and comprise one or more other
policy sets. In order to capture such a recursive inclusion of policy
sets, the pwd:belongsToPolicySet property is rendered
applicable to policy sets as well (i.e. in addition to policies).

3.2.2 Ontological Representation of DFD Rules
A DFD rule is abstractly described by the template illustrated in

Table 1.
Table 1. DFD rule template

[controlled object] is fragmented with [fragmentation scheme]
and distributed with [distribution scheme]

This template specifies a generic structure, in terms of relevant
attributes, to which all DFD rules adhere. It comprises the attributes
controlled object, fragmentation scheme and distribution scheme.
The first attribute identifies the sensitive data object which is to be
fragmented and distributed. Its values are drawn from the class
pcm:Object of the Security Context Element model – a
vocabulary of relevant classes and properties that has been devised
as part of the PaaSword project for describing the various
contextual attributes that may appear in a policy rule. For reasons
of space, this vocabulary is omitted here; the interested reader is
referred to [23], [13] for more details.

The second and third attributes identify, respectively, the data
fragmentation and distribution schemes that are to be applied to the
controlled object. They draw their values from the classes
pdm:DataFragmentation and pdm:DataDistribution
respectively of the Data Distribution and Encryption model defined
in [13]. These classes encompass a framework of concepts and
properties for accomodating relevant knowledge artefacts such as
the particular fragmentation scheme used (e.g. vertical or horizontal
fragmentation) and the particular data distribution scheme adopted
(e.g. preferred or fobidden data storage locations, preferred of
forbidden data storage providers). The works in [23], [13] provide

Figure 3. The DFD Profile

more details on the concepts and properties that make up the Data
Distribution and Encryption model.

The rule template of Table 1 is expressed ontologically as a
customised version of the Rule concept of the ontological meta-
model of Section 3.2.1. More specifically, the template itself is
represented as an instance of the class pdfd:DFDRule which is
defined as a subclass of the class pwd:Rule (see Figure 4). The
template is associated with its constituent attributes through the
object properties pdfd:hasControlledObject,
pdfd:hasDataFragmentation and
pdfd:hasDataDistribution (see Figure 4).

3.2.3 Ontological Representation of DFD Policies
Similar to DFD rules, DFD policies take the form of customised

versions of the pwd:Policy concept of the ontological meta-
model of Section 3.2.1. More specifically, individual DFD policies
take the form of instances of the class pdfd:DFDPolicy which
is defined as a subclass of the class pwd:Policy (see Figure 4).
A DFD policy is tied to the rules that it comprises through the object
property pdfd:hasDFDRule. This property is a sub-property of
the generic property pwd:hasRule introduced by the policy
meta-model4.

3.2.4 Ontological Representation of DFD Policy Sets
Similar to DFD policies, DFD policy sets take the form of

customised versions of the pwd:PolicySet concept of the
ontological meta-model of Section 3.2.1. More specifically,
individual DFD policy sets take the form of instances of the class
pdfd:DFDPolicySet which forms a subclass of the class
pwd:PolicySet class (see Figure 4). A DFD policy set is
associated with the DFD policies that it comprises through the
object property pdfd:belongsToDFDPolicySet. This
property is a sub-property of the generic property
pwd:belongsToPolicySet introduced by the ontological
meta-model. Note that a DFD policy set may exhibit a hierarchical
structure and encompass nested DFD policy sets. In order to capture
such a recursive inclusion, the

4 It is to be noted here that we could alternatively devise a model

whereby each DFD policy refers to exactly one controlled object
and to exactly one DFD scheme and hence comprises exactly one
rule. This means that we could completely dispense with the
concept of DFD policies and, instead, rely entirely on the concept
of DFD rules. Nevertheless, we refrain from doing so for two main
reasons: (i) We would like to retain a uniform ontological structure,

pdfd:belongsToDFDPolicySet property is also applicable
to DFD policy sets (i.e. in addition to policies).

4. RELATED WORK
A number of different approaches to policy representation have

been proposed [6], [7], [17], [25], [21], [9], [11]. [6] proposes
PONDER – a domain-specific language for modelling security and
management policies; [7], [17], [25] propose markup languages for
articulating access control policies. Although these formalisms
promote a separation of concerns by unravelling the representation
of policies from the code employed for enforcing them, they lack
semantic agreement outside the confines of the organisations that
created the policies. Any interoperability thus hinges on ad-hoc
vocabularies that are shared by the various stakeholders that
participate in an interaction. This inevitably entails the following
shortcomings: (i) it restricts the portability of policies as well as
their reusability; (ii) it hinders the determination of inter-policy
relations; (iii) it leads to ad-hoc reasoning about policy compliance,
one which is tangled with the particular vocabularies that are
utilised for articulating the rules according to which the reasoning
takes place; (iv) it impedes the performance of rule-based policy
governance.

In an attempt to overcome these shortcomings, a number of
semantically-rich approaches for the representation of policies have
been proposed [21], [9], [11]. These embrace OWL for capturing
the knowledge that underlie the policies. More specifically, [21]
presents KAoS – a layered framework for articulating, enforcing
and managing policies. KAoS comprises: (i) a human interface
layer for the expression of policies; (ii) a policy management layer
that ontologically captures the knowledge that resides in policies;
(iii) a monitoring and enforcement layer that encodes this
knowledge in a programmatic format suitable for enforcing the
policies. In [9] Rei is proposed – an ontology that captures a broad
range of policies through the provision of a suitable abstraction for
the representation of a set of desirable behaviours that are exhibited
by autonomous entities. In [11], the authors propose POLICYTAB
for facilitating trust negotiation in Semantic Web environments.
POLICYTAB adopts ontologies for the representation of policies
that guide a trust negotiation process ultimately aiming at granting,
or denying, access to sensitive Web resources. These policies
essentially specify the credentials that an entity must possess in
order to carry out an action on a sensitive resource that is under the
ownership of another entity.

Although the aforementioned semantically-rich approaches
succeed in capturing the knowledge artefacts that are reflected in a
policy, their reliance on the standards semantics of OWL [12],
hence on the Open World Assumption that OWL is based upon,
hinders the expression of constraints regarding the content and
structure of a policy [19]. This impedes the construction of a policy
validator that evaluates the correctness of policies by assessing
their conformance with such constraints. In contrast, the reliance of
our approach on RDF for the expression of policies raises this
limitation.

one which abides by the generic ontological meta-model of Section
3.2.1. (ii) For increased generality, we would like to retain the
possibility of a single multi-rule DFD policy being capable of
protecting a multitude of sensitive objects with possibly different
DFD schemes.

Figure 4. The DFD Ontological Template

5. CONCLUSIONS AND FUTURE WORK
This work has proposed an approach to the construction of

ontological templates for the representation of security policies in
cloud environments. The templates aim at facilitating the definition
of appropriate security policies that give rise to effective security
controls for protecting sensitive data in the cloud. An advantage of
our approach is that the proposed templates are formulated using a
generic and extensible RDF vocabulary that lends itself to a series
of correctness checks that can be performed automatically and
orthogonally to the code employed for enforcing the policies. These
checks aim at assessing the validity of a policy with respect to a
higher-level ontology that articulates all those attributes whose
values a policy may, or may not, restrict. These checks crucially
increase our degree of assurance on the effectiveness of the security
policies.

In the future, we plan to build the higher-level ontology. As
already mentioned, this ontology imposes constraints on the actual
RDF tripes that may, or may not, be encountered in a policy. The
higher-level ontology will be expressed in the OWL 2 Web
Ontology Language which provides the required expressivity for
accurately articulating these constraints. A policy validator that
parses the higher-level ontology and programmatically represents
its contstraints can then be constructed in order to automatically
determine whether a policy complies with these constraints.
Moreover, we intend to build an editor which will facilitate the
formulation of the aforementioned constraints in the higher-level
ontology.

6. ACKNOWLEDGMENTS
The research leading to these results has received funding from

the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 644814.

7. REFERENCES
[1] Barros, A. and Oberle, D.: Handbook of Service Description:

USDL and its Methods, Springer (2012)

[2] Cardoso, J., Pedrinaci, C., Leidig, T., Rupino P. and Leenheer,
P.: Foundations of Open Semantic Service Networks.
International Journal of Service Science, Management,
Engineering, and Technology, vol. 4, no. 2, 1-16 (2013)

[3] Cardoso, J., Pedrinaci, C., Leidig, T.: Linked USDL: a
Vocabulary for Web-scale Service Trading. In 11th Extended
Semantic Web Conference (ESWC) (2014)

[4] Cloud Computing Reference Architecture. Technical report,
NIST (2011)

[5] CloudPassage, “Cloud Security Spotlight Report,” LinkedIn,
2015

[6] Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder
Policy Specification Language. In Sloman, M., Lobo, J., Lupu,
E. (eds.) Proceedings of the International Workshop on
Policies for Distributed Systems and Networks (POLICY '01),
pp. 18--38, Springer-Verlag, London (2000)

[7] eXtensible Access Control Markup Language (XACML)
Version 3.0. 22 January 2013. OASIS Standard.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.html

[8] GoodRelations: The Professional Web Vocabulary for E-
Commerce. http://www.heppnetz.de/projects/goodrelations/

[9] Kagal, L., Finin, T., Joshi, A.: A Policy Language for a
Pervasive Computing Environment. In 4th IEEE Int.
Workshop on Policies for Distributed Systems and Networks
(POLICY '03), pp. 63--74, IEEE Computer Society,
Washington, DC (2003)

[10] Linked USDL, http://www.linked-usdl.org/

[11] Nejdl, W., Olmedilla, D., Winslett, M, Zhang. C.C.:
Ontology-Based policy specification and management. In
Gómez-Pérez, A. and Euzenat, J. (eds.) ESWC'05, pp. 290-
302, Springer-Verlag, Berlin, Heidelberg (2005)

[12] OWL 2 Web Ontology Language Primer (2nd Edition),
https://www.w3.org/TR/owl2-primer/

[13] PaaSword Deliverable 2.1.
https://www.paasword.eu/deliverables/

[14] PaaSword Deliverable 2.2.
https://www.paasword.eu/deliverables/

[15] PaaSword project, http://www.paasword.eu/

[16] RDF 1.1 XML Syntax, http://www.w3.org/TR/2014/REC-
rdf-syntax-grammar-20140225/

[17] Security Assertions Markup Language (SAML) Version 2.0.
Technical Overview 25 March 2008. OASIS Standard.
https://www.oasis-
open.org/committees/download.php/27819/sstc-saml-tech-
overview-2.0-cd-02.pdf (2008)

[18] SKOS Simple Knowledge Organization System.
http://www.w3.org/2004/02/skos/

[19] Tao, J., Sirin, E., Bao, J. and McGuinness, D. L.: Integrity
Constraints in OWL, In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI-10), Atlanta,
Georgia, USA, July 11-15 (2010)

[20] The FOAF Project. http://www.foaf-project.org/

[21] Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A.,
Dalton, J., and Aitken, S.: KAoS Policy Management for
Semantic Web Services. IEEE Intel. Sys. 19, 4, 32--41 (2004)

[22] Veloudis, S., Paraskakis, I., Petsos, C.: Cloud Service
Brokerage: Strengthening Service Resilience in Cloud-Based
Virtual Enterprises. In Camarinha-Matos et al. (eds.) PRO-VE
2015. LNCS, vol 463, pp. 122--135, Springer, Heidelberg
(2015)

[23] Veloudis, S., Verginadis, Y., Patiniotakis, I., Paraskakis, I.,
Mentzas, G.: Context-aware Security Models for PaaS-
enabled Access Control. CLOSER Conference (2016)

[24] What’s Hindering the Adoption of Cloud Computing in
Europe?, 15 September 2015. [Online]. Available:
https://blog.cloudsecurityalliance.org/2015/09/15/whats-
hindering-the-adoption-of-cloud-computing-in-europe/

[25] WS-Trust 1.3. 19 March 2007. OASIS Standard.
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-
1.3-os.doc (2007)

