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Abstract—Cloud computing enables enterprises to realise 

significant cost savings whilst accelerating the development of 

new innovative applications. Nevertheless, due to security 

concerns, enterprises are reluctant to migrate their operations to 

the cloud. In addition, the proliferation of cloud services 

transforms the enterprise IT environment into a complex 

ecosystem of collaborating services. One way to tame this 

complexity and alleviate the security concerns is to rely on 

policies that regulate the deployment, delivery and governance of 

cloud services. However, the heterogeneity inherent in such 

services, coupled with the dynamic nature of cloud environments, 

hinders the formulation of effective and interoperable policies. 

This paper proposes a generic framework for the definition and 

representation of policies that are enforceable across diverse 

administrative domains and are amenable to automated 

correctness checks. 
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I.  INTRODUCTION 

By embracing the cloud computing paradigm, organisations 
gain access to a vast ecosystem of infrastructure, platform, and 
software resources that are abstracted as services and delivered 
over the Internet on an on-demand basis by diverse providers 
[1]. The low cost at which these services are typically 
provisioned enables organisations to realise significant savings 
whilst accelerating the development and deployment of new 
applications. Cloud computing therefore acts as a catalyst for 
innovation and stimulates the introduction of new business 
models.  

Nevertheless, due mainly to confidentiality, privacy and 
integrity concerns, enterprises are reluctant to migrate their 
sensitive data to the cloud [2] [3]. In addition, as externally-
sourced services proliferate, the enterprise IT environment 
becomes a complex ecosystem of heterogeneous services, 
making it increasingly difficult to keep track of when and how 
services evolve over time, either through intentional changes 
initiated by their providers, or through unintentional changes, 
such as fluctuations in service performance and availability [4]. 
One way to tame this complexity and assist alleviating security 
concerns, is to rely on policies that regulate the deployment, 
and governance of cloud services, thereby achieving an 
adequate level of security and predictability in service 
behaviour. These policies, if they are to be effective, must: (i) 
take into account the dynamicity and unpredictability of cloud 
environments, as well as the inherent heterogeneity of cloud 
services; (ii) be interoperable – hence enforceable – across the 

different administrative domains that a cloud environment may 
span; (iii) be amenable to a series of automated correctness 
checks that increase assurance on their effectiveness. These 
requirements call for a novel framework for the definition of 
policies, one which accurately captures the knowledge that 
lurks behind policies and promotes a clear separation of 
concerns by disentangling the representation of policies from 
the actual code employed for enforcing them.  

This paper proposes such a framework. More specifically, it 
proposes an iterative multi-layered process for the construction 
of an ontological template suitable for the semantic 
representation of policies in dynamic cloud environments. The 
proposed template is underpinned by a set of abstract relevant 
concepts, and their associations, that capture all those 
knowledge artefacts that are required for describing policies in 
a particular application domain. By undergoing a number of 
iterative refinement steps, this template is subsequently reified 
in order to arrive at readily enforceable concrete policies. For 
instance, regarding access control policies, the template would 
initially include such abstract concepts as ‘subject’, ‘action’, 
‘object’, ‘location of access’, ‘time of access’, etc. These 
concepts would then be iteratively refined arriving, ultimately, 
at concrete access control policies. For instance, the ‘location’ 
concept could be initially refined by including sub-concepts for 
all geographical areas from which a sensitive data can be 
accessed and, subsequently, further concretised by including 
specific access locations as instances of these sub-concepts.  

The proposed ontological template is expressed in terms of 
an extensible lightweight RDF vocabulary which lends itself to 
automated reasoning about the correctness of policies with 
respect to a set of relevant constraints on their actual content 
and structure. More specifically, it paves the way for the 
construction of a higher-level ontology which captures these 
constraints by drawing upon a richer formalism such as OWL 
2 [5]. Both the policies and the constraints are therefore 
expressible in a uniform representation, namely as RDF graphs 
[6], hence facilitating the construction of a policy validating 
mechanism able to automatically assess the correctness of the 
policies.  

Although the proposed framework is applicable to any kind 
of policy, in this paper we concentrate on the security policies 
devised as part of the PaaSword project [7]. This project sets 
out to offer a security-by-design solution – essentially a PaaS 
offering – assisting developers in defining effective security 
policies for dynamic cloud environments. PaaSword aims at 
encryption policies, that regulate the kind of cryptographic 
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protection that a sensitive data object should enjoy; (ii) data 
fragmentation and distribution policies, that articulate how 
data objects are fragmented and distributed over different 
physical servers in order to safeguard their privacy; (iii) access 
control policies, that specify the contextual circumstances 
under which access to sensitive data objects is granted or 
denied.  

The rest of this paper is structured as follows. Section II 
presents related work. Section III presents our approach to the 
construction of the ontological template for the semantic 
representation of policies. Sections IV and V demonstrate how 
this template can be applied for modelling security policies in 
the PaaSword project. Finally, Section VI presents conclusions 
and future work 

II. RELATED WORK 

Numerous works have endeavoured to address the 
deficiencies stemming from the absence of a proper separation 
of concerns between policy representation and policy 
enforcement [8–14]. In [8], a language for modelling security 
and management policies called PONDER is proposed; in a 
similar vein, the works in [9–11] embrace markup languages 
for formulating security (access control) policies. Nonetheless, 
such syntactic descriptions do not provide the means to capture 
the knowledge that resides in policies: they are simple data 
models that do not provide any semantic agreement beyond the 
boundaries of the organisations that adopted them. Any 
interoperability necessarily hinges upon the use of vocabularies 
that are shared among the parties involved in an interaction. 
This presents the following limitations: (i) it leads to ad-hoc 
reasoning about policy compliance – one that is inextricably 
tied to the specific vocabularies in which the rules of the 
reasoning are articulated; (ii) it restricts the portability and 
reusability of policies; (iii) it prohibits the identification of 
relations among policies (e.g. contradicting policies, pairwise 
subsuming policies, etc.); (iv) it restricts the ability to perform 
policy governance. 

In order to overcome these limitations, semantically-rich 
approaches to policy specification have been proposed [12–14]. 
These generally employ ontologies in order to capture the 
knowledge that resides in policies. The rules that implement 
these policies can then be derived from this knowledge and can 
be articulated using any suitable syntactic description language. 
In [12], the authors present KAoS: a general-purpose policy 
management framework which exhibits a three-layered 
architecture comprising: i) a user interface layer; ii) a layer for 
managing and governing policies that uses OWL to express 
policy-related knowledge; iii) a policy monitoring and 
enforcement layer, which grounds OWL-expressed policies to 
a programmatic format that lends itself to policy-based 
monitoring and enforcement. In [13] the authors propose Rei – 
a language for specifying policies that draws upon OWL-Lite. 
Rei allows the articulation of a wide range of policies that 
discern those actions that can be performed, and those actions 
that should be performed on a resource. It therefore provides an 
abstraction that allows the expression of a desirable set of 
behaviours that are purportedly enforceable by different 
autonomous entities. In [14], POLICYTAB is proposed for 
allowing automated trust negotiation in Semantic Web 

environments. POLICYTAB advocates an ontology-based 
approach for specifying policies that regulate and drive a trust 
negotiation process aiming at granting controlled access to 
Web resources. These policies essentially determine the 
credentials that must be presented by an entity in order to 
perform an action on a resource owned by another entity.  

The aforementioned approaches, whilst achieving a proper 
separation of concerns between policy specification and policy 
enforcement, rely on OWL’s standard semantics which, due to 
the Open World Assumption [5], encumbers the definition of 
constraints on the actual content and structure of a policy [15]. 
This naturally hinders the construction of a policy validator 
that assesses the correctness of policies by checking their 
compliance against such constraints. In contrast, the reliance of 
our framework on RDF for the specification of policies 
absolves us from this limitation.  

In [16], the development of a rule-based policy 
management system that can be deployed in the Web is 
described. The system combines the N3 language with a 
theorem prover designed for the Web in order to provide a 
mechanism for the exchange of access control rules, as well as 
of proofs that justify that these rules are indeed observed by an 
actor. Nevertheless, the proposed system does not provide any 
means for identifying inter-policy relations or performing any 
form of policy governance. 

III. A STEPWISE APPROACH TO GENERIC POLICY 

REPRESENTATION 

This work proposes an ontological template for the 

semantic representation of security policies. Such a template 

allows the generic formulation of any kind of policy whilst, at 

the same time, it lends itself to, and therefore paves the way 

for, a series of correctness checks that are performed 

automatically by a policy validator with reference to a higher-

level ontology which captures constraints on the content and 

structure of the policies1. Below we outline a framework for 

the construction of such an ontological template. As depicted 

in Fig. 1, this framework comprises three phases or layers. At 

the first layer, the so-called conceptualisation layer, the 

identification and informal description of the concepts that are 

involved in the definition of a policy takes place. At the 

second layer, the so-called formalisation layer, an ontological 

template for the semantic respresentation of policies is derived 

by formalising the concepts identified in the first layer. At the 

third layer, the so-called reification layer, the ontological 

template of the second layer is instantiated to give rise to 

concrete policies. It is to be emphasised here that proceeding 

from one layer to the next is not necessarily an incremental 

process but may entail a number of iterative passes during 

which certain concepts that have already been formalised at 

the second layer are further specified, or refined, in terms of 

new, more fine-grained concepts; the identification of these 

finer-grained concepts takes place at the first layer before 
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Fig. 1. Multi-layered approach to constructing an ontological template for 

modelling policies 

prceeding anew to formalise them at the second layer. The 

three layers of our framework are further elaborated below. 

A. Conceptualisation Layer 

At the first layer, the concepts potentially involved in the 
definition of a policy, as well as their interrelations and 
associations with other concepts, are informally described. 
These concepts ultimately give rise to attributes whose values 
are constrained by the policy. Of course, the nature of these 
concepts, or attributes, depends on the underlying domain of 
discourse and the kind of policies that one is interested in 
defining. As an example, consider the case of context-aware 
access control policies. These policies are typically defined 
[17] in terms of such concepts as: the physical location from 
which an access request is performed, the time at which the 
request takes place, the subject that performs the request, the 
kind of access requested (e.g. read or write), the object (or 
resource) targeted by the request, etc.  

It is to be noted that the concepts identified at the 
conceptualisation layer may be readily available from other 
ontologies that have already been devised in the underlying 
domain of discourse. For instance, in the realm of security, the 
USDL-SEC [18] ontology provides a number of concepts that 
may be readily used for modelling security policies.   

Finally, it is to be emphasised that the conceptualisation 
layer has one more important role to play: by identifying the 
attributes whose values are constrained by policies, it 
essentially identifies the necessary, or optional, ingredients that 
any policy in the underlying domain of discourse encompasses, 
as well as the value ranges that these ingredients may attain. 
This paves the way for the definition of a set of constraints 
expressible in a higher-level ontology that determine the 

correctness of the policies2. For instance, going back to the 
access control example, a constraint may insist that any policy 
must specify exactly one value for the attributes location, 
subject, object and kind of access, and may specify exactly one 
value for the rest of the attributes; any policy not bearing these 
characteristics is not considered a correct policy. Similarly, a 
constraint may insist that the range of values that the location 
attribute may attain is drawn from a given set of specific 
locations – any policy specifying a location value outside this 
set is not considered a correct policy. 

B. Formalisation Layer 

At the second layer, the concepts and their associations 
identified at the conceptualisation layer are formalised in terms 
of an ontological template, one in which concepts are modelled 
as classes and interrelations as properties. In fact, as already 
discussed, such a formalisation may entail a certain degree of 
iteration and may be performed in a number of passes. Each 
pass comprises two distinct steps: (i) One which takes place at 
the conceptualisation layer and aims at identifying concepts 
and properties that further refine the classes and properties that 
already appear in the ontological template. (ii) One which takes 
place at the formalisation layer and aims at introducing a set of 
classes and properties that formalise the newly identified 
concepts and properties. This iterative process ceases when the 
concepts that already appear in the ontological template need 
not be, or cannot be, further refined at the chosen level of 
abstraction. Of course, if this level of abstraction changes and a 
more granular representation of concepts is favoured, new 
concepts that refine existing ones can be introduced anew. 
Going back to the access control example of Section III.A, a 
policy may initially be defined in terms of a set of top-level 
concepts including: the physical location, the time of day, the 
subject, the kind of access and the object. Each such concept is 
defined as a class in the ontological template. Nevertheless, 
some of these top-level concepts may prove overly abstract to 
be of practical use. A 2nd pass therefore ensues which 
identifies, at the conceptualisation layer, concepts that refine 
one or more of the existing concepts in the ontological 
template. For example, the physical location concept may be 
refined in terms of concepts that determine different ways of 
specifying locations (e.g. point coordinates, points of interest, 
geographical areas, etc.). These refining concepts are then 
formalised in terms of new classes and properties.  

Finally, it is to be noted here that the classes and properties 
of the ontological template are also used by the higher-level 
ontology briefly discussed in Section III.A. In fact, these 
classes and properties form an adequate basis for the definition 
of domain-specific constraints concerning the allowable 
ingredients of a policy. 

                                                           
2  The mere identification of the concepts that participate in a set of 

policies is not, by itself, sufficient for the construction of such a 

higher-level ontological framework. An entire body of constraints 

that restrict the different allowable forms of a policy must be 

articulated. 



C. Reification Layer 

At the third layer, a final reification step takes place 
whereby the classes and properties of the ontological policy 
template are instantiated in order to give rise to concrete 
policies. For instance, going back to the access control 
example, a concrete policy may be derived by instantiating the 
subject attribute with the individual ‘Bob’, the location 
attribute with the geographical coordinates that correspond to 
Bob’s office, the object attribute with a particular data resource 
and the kind of access attribute with the value ‘read/write’. 
Such a policy essentially grants to Bob read/write access to the 
particular data resource from his office. 

In the following sections we shall demonstrate how the 
multi-layered framework presented above can be used for 
modelling a certain class of security policies, namely the 
PaaSword policies. 

IV. SECURITY POLICIES IN THE CLOUD: AN ABSTRACT 

FRAMEWORK 

As stated in Section I, the PaaSword project discerns three 
kinds of security policy: data encryption policies, data 
fragmentation and distribution policies, and access control 
policies. The latter allow, or disallow, access to sensitive data 
objects on the basis of a set of contextual attributes pertaining 
to the entity requesting the access. Context awareness is 
considered of utmost importance for safeguarding access in 
dynamic and heterogeneous cloud environments [17]. 
Attribute-based Access Control (ABAC) policies, due to their 
inherent generality stemming from their reliance on the generic 
concept of an attribute, are deemed particularly suitable for 
infusing such contextual awareness [19]. They are thus adopted 
in PaaSword. 

Following the multi-layered framework of Section III, we 
model the PaaSword security policies by initially identifying 
and informally describing a set of top-level concepts that are 
involved in the definition of these policies. These top-level 
concepts are subsequently formalised in terms of ontological 
classes and object properties. 

A. PaaSword Policies: Conceptualisation Layer 

The top-level concepts involved in the definition of the 
PaaSword policies are readily provided by USDL-SEC: Linked 
USDL’s simple vocabulary for describing the security 
properties of an application [18]. This section provides a brief 
informal description of this vocabulary. Nevertheless, an 
outline of the reasons that led us to the decision to adopt the 
concepts offered by USDL-SEC is first in order. 

1) Linked USDL. Linked USDL [18] is a remodelled 
version of USDL [20] which draws upon the results and 
experience gained with USDL, as well as with prior research 
efforts in the realm of Semantic Web Services and business 
ontologies [21]. It builds upon the principles of Linked Data in 
order to promote its use in a ‘web of data’. In this respect, it 
expresses specifications in terms of an RDF vocabulary [22] 
that provides better support for the generic description of web 
and cloud services. Linked USDL comprises a Core schema, 
as well as a number of additional schemata, or profiles, 

addressing diverse business aspects of a cloud service. In this 
work we are interested in the Security profile (USDL-SEC) 
which provides an adequate basis for describing generically 
any security policy. The adoption of Linked USDL brings 
about a number of advantages [21]. Firstly, Linked USDL 
relies on existing widely-used RDF vocabularies, such as 
GoodRelations [23] the Simple Knowledge Organization 
System (SKOS) ontology [24], and FOAF [25]. In this respect, 
it promotes knowledge sharing whilst it increases the 
interoperability, and thus the reusability and generality, of our 
security policies. Secondly, by offering a number of different 
profiles, Linked USDL provides a holistic and generic solution 
able to adequately capture a wide range of business details. In 
addition, Linked USDL is designed to be easily extensible 
through linking to further existing, or new, ontologies. This is 
significant for our work for it facilitates seamless integration 
with the vocabularies devised in [26] for describing the 
concepts involved in the definition of the security policies (see 
Section V for more details). 

2) Informal Description of the USDL-SEC Vocabulary. 
USDL-SEC identifies the five top-level concepts depicted in 
Fig. 2, namely Security Profile, Security Goal, Security 
Mechanism, Security Technology and Security Realisation 
Type. The Security Profile concept includes the different 
security profiles to which a cloud application may adhere. A 
security profile is tied to at least one security goal. This gives 
rise to the Security Goal concept that includes a set of sub-
concepts each representing a distinct security goal – Fig. 2 
depicts the list of security goals that are supported by USDL-
SEC. A security goal is associated with the security mechanism 
through which it is implemented. This introduces the Security 
Mechanism concept that includes sub-concepts for representing 
particular security mechanism kinds – Fig. 2 depicts the list of 
security mechanism kinds that are provided by USDL-SEC. A 
security mechanism is associated with a particular security 
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technology that implements it, giving rise to the Security 
Technology concept. Moreover, a security mechanism is 
related to the particular layer of the ISO/OSI protocol stack at 
which it operates (for instance, the Application or Network 
layer); this brings about the Security Realization Type concept 
whose role is to determine this layer. 

B. PaaSword Policies: Formalisation Layer 

The concepts and their associations identified in the 
informal description of Section IV.A are formalised in terms of 
the USDL-SEC ontology depicted in Fig. 2. More specifically, 
each concept is formulated as a class of the ontology, and each 
concept association is formulated as an object property3. In 
particular, the following four object properties are discerned: 
hasSecurityGoal that links a security profile with its 

security goal(s); isImplementedBy that relates a security 

goal with the mechanism through which it is achieved; 
isRealizedByTechnology that links a security 

mechanism with the particular technology that realises it; 
hasSecurityRealizationType that determines the 

ISO/OSI layer at which the security mechanism operates. 
Furthermore, the SKOS broader property [24] is employed in 
order to express the fact that one concept forms a sub-concept 
of another. This framework of classes and properties forms an 
abstract ontological template that lays the foundations for 
constructing a model for the generic representation of the three 
kinds of security policy outlined at the beginning of Section IV. 
In Section V, we demonstrate how this framework is refined in 
order to derive an ontological template for modelling ABAC 
policies. The other two kinds of policy, namely data encryption 
and data fragmentation and distribution policies, are modelled 
analogously – the interested reader is referred to [27] for a 
relevant account. 

V. ABAC POLICIES: AN ABSTRACT FRAMEWORK 

We model ABAC policies by refining the USDL-SEC 
concepts presented in Section IV. The refinement proceeds 
either by using existing classes that already appear in the 
USDL-SEC vocabulary (e.g. the Security Mechanism concept 
is refined in terms of its narrower Access Control concept – see 
Fig. 2), or by introducing new concepts, and their associations, 
that are subsequently formalised into ontological classes and 
properties. In the former case, the refinement is performed 
directly at the formalisation layer. In the latter case, the 
refinement requires an iteration between the conceptualisation 
and formalisation layers. In particular, the new concepts and 
their associations are identified and informally described at the 
conceptualisation layer and their subsequent formalisation in 
terms of classes and object properties takes place at the 
formalisation layer. 

A. Refining USDL-SEC for ABAC Policies Using Existing 

Classes 

ABAC policies are modelled under a particular security 
profile, namely the PaaSword Access Control (PAC) profile, 

                                                           
3  All USDL-SEC classes and properties are prefixed with the 

usdl-sec namespace. This namespace is omitted here to reduce 

notational clutter. 

which is represented as an instance of the class 
SecurityProfile (see Fig. 3)4. The security goal of this 

profile is authorisation. As depicted in Fig. 3, this is modelled 
by refining the SecurityGoal class in terms of the USDL-

SEC Authorization class and defining an instance of this 

class, namely AccessControlGoal, to represent the 

particular authorisation goal. This goal is implemented by a 
security mechanism, in particular, an access control 
mechanism. This is captured by refining the 
SecurityMechanism class in terms of the USDL-SEC 

AccessControl class and defining an instance in this class, 

namely AccessControlMechanism, which represents the 

access control mechanism offered by the PaaSword framework. 
This mechanism operates at the application layer of the 
ISO/OSI protocol. This is captured by refining the 
SecurityRealizationType class in terms of the USDL-

SEC InUsageType class5 and introducing an instance of this 

class, namely AccessControlType. 

B. Refining USDL-SEC for ABAC Policies by Introducing 

New Concepts 

The PaaSword access control mechanism is implemented in 
terms of a security technology that is based on a particular 
ABAC model, one which takes into account the context from 
within which an access request is made. In order to model such 
a security technology, a number of new concepts, and their 
associations, need to be introduced and described at the 
conceptualisation layer. These are the PaaSword ABAC 
concept, which represents the particular ABAC technology 
utilised, and the ABAC Policy Set concept, which bundles 
together the ABAC policies on which the PaaSword ABAC 
concept relies. These two concepts are formalised by 
introducing the classes PaaSwordABAC and 

ABACPolicySet respectively (see Fig. 3). These classes are 

interrelated through the object property 
hasABACPolicySet. The instance 

AccessControlTechnology represents the particular 

security technology that the PaaSword project utilises. 

C. Further Refining USDL-SEC for ABAC Policies 

The ABACPolicySet concept introduced above 

encompasses the ABAC policies on which PaaSword relies. 

This concept must be further refined in order to derive an 

ontological model of the actual ABAC policies that it 

comprises. Such a refinement entails the introduction of a set 

of new concepts and their associations. It thus entails a new 

iteration between the conceptualisation and formalisation 

layers. In particular, the new concepts are identified and 

informally described at the conceptualisation layer and are 

subsequently formalised to make their way into the 

ontological template of Fig. 3. 

                                                           
4  All classes, properties and instances introduced as part of the 

formalisation and reification of the PaaSword Access Control 

profile are drawn from the pac namespace. To reduce notational 

clutter, this namespace is omitted from all textual descriptions (it 

appears though in the figures). 
5   This class represents one of the classes offered by USDL-SEC. 



The conceptualisation and formalisation of these new concepts 

is further elaborated below. 

1) Conceptualisation Layer. Following an approach 

inspired by the XACML standard [8], ABAC policy sets are 

refined by associating them with the actual policies that they 

comprise which are, in turn, associated with sets of rules. In 

this respect, the concepts ABAC Rule and ABAC Policy are 

introduced. The ABAC Rule concept is the basic building 

block of an ABAC policy. It represents the template depicted 

in Table I. This template defines a generic structure to which 

all PaaSword ABAC rules adhere. It comprises the attributes 

Actor, Context Expression, Auth, Action and Controlled 

Object which are represented in terms of a set of 

corresponding concepts. Thus, the concept Actor identifies the 

subject requesting to carry out an operation on a data object; 

the concept Context Expression represents an expression that 

determines the contextual conditions that must be satisfied in 

order to allow, or disallow, an operation on a data object; the 

concept Auth specifies the kind of authorisation (i.e. ‘permit’ 

or  ‘deny’) that is granted; the concept Action articulates the 

requested operation; the concept Controlled Object identifies 

the sensitive object.  

TABLE I.  RULE TEMPLATE 

[Actor] with [Context Expression] has [Auth] for [Action] on 
[Controlled Object] 

2) Formalisation Layer. The concepts ABAC Rule and 

ABAC policy are formalised in terms of the classes 

ABACRule and ABACPolicy respectively – see Fig. 4. 

These classes are interrelated through the object property 

hasABACRule which associates an ABAC policy with its 

constituent rules. In addition, the ABACPolicy class is 

associated with the policy set to which it belongs through the 

property belongsToABACPolicySet. The rest of the 

concepts informally presented above are formalised as 

follows. The Controlled Object concept is formalised in terms 

of the class Object. This class is associated with an ABAC 

rule through the object property hasControlledObject. 

It is part of the Context Model [17]  [26] – a vocabulary of 

relevant classes and properties that has been devised in the 

PaaSword project for describing the various contextual 

attributes that may appear in an ABAC rule6. For reasons of 

space, the Context Model (CM) is not further elaborated here. 

The interested reader is referred to [26] for more details. The 

concept Auth is formalised in terms of the class 

Authorisation. This class is associated with an ABAC 

rule through the object property hasAuthorisation. It 

invariably comprises the two instances depicted in Fig. 4. The 

concept Action is formalised in terms of the class 

Permission. This class belongs to the CM and is associated 

with an ABAC rule through the object property 

hasAction. The concept Actor is formalised in terms of the 

class Subject. This class belongs to the CM and is 

associated with an ABAC rule through the object property 

hasActor. Finally, the concept Context Expression is 

formalised in terms of the CM class ContextExpression 

which is associated with an ABAC rule through the object 

property hasContextExpression. This class is further 

elaborated in Section V.D below. 

                                                           
6  The pcm namespace, as well as the ppm and pcpm namespaces 

(see Fig. 4 and Fig. 5), are defined as part of the Context Model 

[17], [26]. To reduce notational clutter, these namespaces are 

again omitted from textual descriptions. 
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D. Context Expressions for ABAC Policies 

The class ContextExpression specifies the contextual 

conditions that must be satisfied in order to allow, or disallow, 
an operation on a sensitive object. Any further specification of 
this concept requires the introduction of new concepts and their 
associations. It thus entails a new iteration between the 
conceptualisation and formalisation layers as outlined below. 

1) Conceptualisation Layer. The context expression is 
founded on the ContextPattern and 

SecurityContextElement concepts. The former 

identifies any historical access patterns that need to be 
considered in order to permit, or deny, an access request. Such 
patterns are defined in terms of a number of contextual 
attributes such as the ‘physical location’ pattern, the ‘date and 
time’ pattern, the ‘type of device of access’ pattern, etc. The 
latter identifies the contextual attributes, as well as their 
allowable values and value ranges, that are taken into account 
in order to decide whether to permit, or deny, an access 
request. 

2) Formalisation Layer. The two concepts informally 
outlined above are formalised in terms of the CM classes 
ContextPattern and SecurityContextElement 

respectively (see Fig. 5). These classes are associated with the 
class ContextExpression via the object properties 

hasPatternParameter and hasParameter 

respectively (Fig. 5). A context expression may be defined 
recursively by logically combining one or more other context 
expressions. This is captured through the hasParameter 

and hasPatternParameter properties that relate the 

ContextExpression class with itself. It is also captured 

by the four subclasses of ContextExpression depicted in 

Fig. 5 which indicate the kinds of logical connectivity used. 
This is better explained through an example. Suppose a 
context expression (call it expr) that allows access to a 

hypothetical sensitive object only during workdays and not 
from the location “IMU premises”. As depicted in Fig. 6, 
expr is an instance of the class ANDContextExpression 

and thus it is the logical conjunction of two parameters: the 
IsWorkday parameter and a nested context expression. The 

IsWorkday parameter is an instance of the CM class 

DateTimeInterval and represents a time interval 

restricted through the CM properties hasBeginning and 

hasEnd. The nested context expression is an instance of the 

class NOTContextExpression and thus logically negates 

the InIMUPremises parameter. This parameter is an 

instance of the CM class AbstractLocation and is 

restricted through the CM properties hasLatitude, 

hasLongitude and hasRadius to represent a particular 

geographical area. 

VI. CONCLUSIONS 

This paper has proposed a multi-layered iterative 
framework for the construction of an ontological template for 
the semantic representation of security policies in dynamic and 
heterogeneous cloud environments. We argue that this 
framework facilitates developers in expressing effective 
security policies which give rise to appropriate security 
controls that safeguard sensitive data in the cloud. One of the 
virtues of the proposed ontological template is that it is 
expressed in a generic, interoperable and extensible RDF 
vocabulary that lends itself to, and therefore paves the way for, 
a series of correctness checks that are performed automatically 
by a policy validator. These checks aim at assessing the 
validity of a policy with respect to a higher-level ontology that 

 
Fig. 4. Ontological representation of rules and policies 

 
Fig. 5. Ontological representation of a context expression 



captures all those ingredients that a policy may, or may not, 
comprise. These correctness checks are clearly of utmost 
importance for they increase assurance on the effectiveness of 
the policies. 

As part of future work, we intend to construct the higher-
level ontology. This ontology essentially constitutes a schema 
which imposes a number of constraints on the RDF statements 
that may, or may not, be encountered in a policy that has been 
formulated according to the multi-layered framework of 
Section III. These constraints are expressed using the Integrity 
Constraints (IC) semantics for the OWL 2 Web Ontology 
Language proposed in [15]. A policy validator that parses the 
higher-level schema, as well as an input policy, and determines 
whether the latter complies with the former may then be 
constructed. Moreover, as part of future work, we intend to 
construct an editor through which a user will be able to ‘prime’ 
the higher-level ontology with appropriate constraints for a 
particular domain of application. 
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