
Defining an Ontological Framework for Modelling

Policies in Cloud Environments

Simeon Veloudis and Iraklis Paraskakis

South East European Research Centre (SEERC)

The University of Sheffield, International Faculty CITY College

Thessaloniki, Greece

Abstract—Cloud computing enables enterprises to realise

significant cost savings whilst accelerating the development of

new innovative applications. Nevertheless, due to security

concerns, enterprises are reluctant to migrate their operations to

the cloud. In addition, the proliferation of cloud services

transforms the enterprise IT environment into a complex

ecosystem of collaborating services. One way to tame this

complexity and alleviate the security concerns is to rely on

policies that regulate the deployment, delivery and governance of

cloud services. However, the heterogeneity inherent in such

services, coupled with the dynamic nature of cloud environments,

hinders the formulation of effective and interoperable policies.

This paper proposes a generic framework for the definition and

representation of policies that are enforceable across diverse

administrative domains and are amenable to automated

correctness checks.

Keywords—Policy; Linked USDL; Security; Cloud Computing

I. INTRODUCTION

By embracing the cloud computing paradigm, organisations
gain access to a vast ecosystem of infrastructure, platform, and
software resources that are abstracted as services and delivered
over the Internet on an on-demand basis by diverse providers
[1]. The low cost at which these services are typically
provisioned enables organisations to realise significant savings
whilst accelerating the development and deployment of new
applications. Cloud computing therefore acts as a catalyst for
innovation and stimulates the introduction of new business
models.

Nevertheless, due mainly to confidentiality, privacy and
integrity concerns, enterprises are reluctant to migrate their
sensitive data to the cloud [2] [3]. In addition, as externally-
sourced services proliferate, the enterprise IT environment
becomes a complex ecosystem of heterogeneous services,
making it increasingly difficult to keep track of when and how
services evolve over time, either through intentional changes
initiated by their providers, or through unintentional changes,
such as fluctuations in service performance and availability [4].
One way to tame this complexity and assist alleviating security
concerns, is to rely on policies that regulate the deployment,
and governance of cloud services, thereby achieving an
adequate level of security and predictability in service
behaviour. These policies, if they are to be effective, must: (i)
take into account the dynamicity and unpredictability of cloud
environments, as well as the inherent heterogeneity of cloud
services; (ii) be interoperable – hence enforceable – across the

different administrative domains that a cloud environment may
span; (iii) be amenable to a series of automated correctness
checks that increase assurance on their effectiveness. These
requirements call for a novel framework for the definition of
policies, one which accurately captures the knowledge that
lurks behind policies and promotes a clear separation of
concerns by disentangling the representation of policies from
the actual code employed for enforcing them.

This paper proposes such a framework. More specifically, it
proposes an iterative multi-layered process for the construction
of an ontological template suitable for the semantic
representation of policies in dynamic cloud environments. The
proposed template is underpinned by a set of abstract relevant
concepts, and their associations, that capture all those
knowledge artefacts that are required for describing policies in
a particular application domain. By undergoing a number of
iterative refinement steps, this template is subsequently reified
in order to arrive at readily enforceable concrete policies. For
instance, regarding access control policies, the template would
initially include such abstract concepts as ‘subject’, ‘action’,
‘object’, ‘location of access’, ‘time of access’, etc. These
concepts would then be iteratively refined arriving, ultimately,
at concrete access control policies. For instance, the ‘location’
concept could be initially refined by including sub-concepts for
all geographical areas from which a sensitive data can be
accessed and, subsequently, further concretised by including
specific access locations as instances of these sub-concepts.

The proposed ontological template is expressed in terms of
an extensible lightweight RDF vocabulary which lends itself to
automated reasoning about the correctness of policies with
respect to a set of relevant constraints on their actual content
and structure. More specifically, it paves the way for the
construction of a higher-level ontology which captures these
constraints by drawing upon a richer formalism such as OWL
2 [5]. Both the policies and the constraints are therefore
expressible in a uniform representation, namely as RDF graphs
[6], hence facilitating the construction of a policy validating
mechanism able to automatically assess the correctness of the
policies.

Although the proposed framework is applicable to any kind
of policy, in this paper we concentrate on the security policies
devised as part of the PaaSword project [7]. This project sets
out to offer a security-by-design solution – essentially a PaaS
offering – assisting developers in defining effective security
policies for dynamic cloud environments. PaaSword aims at
encryption policies, that regulate the kind of cryptographic

978-1-5090-1445-3/16/$31.00 ©2016 IEEE (CloudCom'16)

© © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

protection that a sensitive data object should enjoy; (ii) data
fragmentation and distribution policies, that articulate how
data objects are fragmented and distributed over different
physical servers in order to safeguard their privacy; (iii) access
control policies, that specify the contextual circumstances
under which access to sensitive data objects is granted or
denied.

The rest of this paper is structured as follows. Section II
presents related work. Section III presents our approach to the
construction of the ontological template for the semantic
representation of policies. Sections IV and V demonstrate how
this template can be applied for modelling security policies in
the PaaSword project. Finally, Section VI presents conclusions
and future work

II. RELATED WORK

Numerous works have endeavoured to address the
deficiencies stemming from the absence of a proper separation
of concerns between policy representation and policy
enforcement [8–14]. In [8], a language for modelling security
and management policies called PONDER is proposed; in a
similar vein, the works in [9–11] embrace markup languages
for formulating security (access control) policies. Nonetheless,
such syntactic descriptions do not provide the means to capture
the knowledge that resides in policies: they are simple data
models that do not provide any semantic agreement beyond the
boundaries of the organisations that adopted them. Any
interoperability necessarily hinges upon the use of vocabularies
that are shared among the parties involved in an interaction.
This presents the following limitations: (i) it leads to ad-hoc
reasoning about policy compliance – one that is inextricably
tied to the specific vocabularies in which the rules of the
reasoning are articulated; (ii) it restricts the portability and
reusability of policies; (iii) it prohibits the identification of
relations among policies (e.g. contradicting policies, pairwise
subsuming policies, etc.); (iv) it restricts the ability to perform
policy governance.

In order to overcome these limitations, semantically-rich
approaches to policy specification have been proposed [12–14].
These generally employ ontologies in order to capture the
knowledge that resides in policies. The rules that implement
these policies can then be derived from this knowledge and can
be articulated using any suitable syntactic description language.
In [12], the authors present KAoS: a general-purpose policy
management framework which exhibits a three-layered
architecture comprising: i) a user interface layer; ii) a layer for
managing and governing policies that uses OWL to express
policy-related knowledge; iii) a policy monitoring and
enforcement layer, which grounds OWL-expressed policies to
a programmatic format that lends itself to policy-based
monitoring and enforcement. In [13] the authors propose Rei –
a language for specifying policies that draws upon OWL-Lite.
Rei allows the articulation of a wide range of policies that
discern those actions that can be performed, and those actions
that should be performed on a resource. It therefore provides an
abstraction that allows the expression of a desirable set of
behaviours that are purportedly enforceable by different
autonomous entities. In [14], POLICYTAB is proposed for
allowing automated trust negotiation in Semantic Web

environments. POLICYTAB advocates an ontology-based
approach for specifying policies that regulate and drive a trust
negotiation process aiming at granting controlled access to
Web resources. These policies essentially determine the
credentials that must be presented by an entity in order to
perform an action on a resource owned by another entity.

The aforementioned approaches, whilst achieving a proper
separation of concerns between policy specification and policy
enforcement, rely on OWL’s standard semantics which, due to
the Open World Assumption [5], encumbers the definition of
constraints on the actual content and structure of a policy [15].
This naturally hinders the construction of a policy validator
that assesses the correctness of policies by checking their
compliance against such constraints. In contrast, the reliance of
our framework on RDF for the specification of policies
absolves us from this limitation.

In [16], the development of a rule-based policy
management system that can be deployed in the Web is
described. The system combines the N3 language with a
theorem prover designed for the Web in order to provide a
mechanism for the exchange of access control rules, as well as
of proofs that justify that these rules are indeed observed by an
actor. Nevertheless, the proposed system does not provide any
means for identifying inter-policy relations or performing any
form of policy governance.

III. A STEPWISE APPROACH TO GENERIC POLICY

REPRESENTATION

This work proposes an ontological template for the

semantic representation of security policies. Such a template

allows the generic formulation of any kind of policy whilst, at

the same time, it lends itself to, and therefore paves the way

for, a series of correctness checks that are performed

automatically by a policy validator with reference to a higher-

level ontology which captures constraints on the content and

structure of the policies1. Below we outline a framework for

the construction of such an ontological template. As depicted

in Fig. 1, this framework comprises three phases or layers. At

the first layer, the so-called conceptualisation layer, the

identification and informal description of the concepts that are

involved in the definition of a policy takes place. At the

second layer, the so-called formalisation layer, an ontological

template for the semantic respresentation of policies is derived

by formalising the concepts identified in the first layer. At the

third layer, the so-called reification layer, the ontological

template of the second layer is instantiated to give rise to

concrete policies. It is to be emphasised here that proceeding

from one layer to the next is not necessarily an incremental

process but may entail a number of iterative passes during

which certain concepts that have already been formalised at

the second layer are further specified, or refined, in terms of

new, more fine-grained concepts; the identification of these

finer-grained concepts takes place at the first layer before

1 It is to be noted here that the purpose of this work is neither to

present such a higher-level ontology, nor to present the policy

validator.

Fig. 1. Multi-layered approach to constructing an ontological template for

modelling policies

prceeding anew to formalise them at the second layer. The

three layers of our framework are further elaborated below.

A. Conceptualisation Layer

At the first layer, the concepts potentially involved in the
definition of a policy, as well as their interrelations and
associations with other concepts, are informally described.
These concepts ultimately give rise to attributes whose values
are constrained by the policy. Of course, the nature of these
concepts, or attributes, depends on the underlying domain of
discourse and the kind of policies that one is interested in
defining. As an example, consider the case of context-aware
access control policies. These policies are typically defined
[17] in terms of such concepts as: the physical location from
which an access request is performed, the time at which the
request takes place, the subject that performs the request, the
kind of access requested (e.g. read or write), the object (or
resource) targeted by the request, etc.

It is to be noted that the concepts identified at the
conceptualisation layer may be readily available from other
ontologies that have already been devised in the underlying
domain of discourse. For instance, in the realm of security, the
USDL-SEC [18] ontology provides a number of concepts that
may be readily used for modelling security policies.

Finally, it is to be emphasised that the conceptualisation
layer has one more important role to play: by identifying the
attributes whose values are constrained by policies, it
essentially identifies the necessary, or optional, ingredients that
any policy in the underlying domain of discourse encompasses,
as well as the value ranges that these ingredients may attain.
This paves the way for the definition of a set of constraints
expressible in a higher-level ontology that determine the

correctness of the policies2. For instance, going back to the
access control example, a constraint may insist that any policy
must specify exactly one value for the attributes location,
subject, object and kind of access, and may specify exactly one
value for the rest of the attributes; any policy not bearing these
characteristics is not considered a correct policy. Similarly, a
constraint may insist that the range of values that the location
attribute may attain is drawn from a given set of specific
locations – any policy specifying a location value outside this
set is not considered a correct policy.

B. Formalisation Layer

At the second layer, the concepts and their associations
identified at the conceptualisation layer are formalised in terms
of an ontological template, one in which concepts are modelled
as classes and interrelations as properties. In fact, as already
discussed, such a formalisation may entail a certain degree of
iteration and may be performed in a number of passes. Each
pass comprises two distinct steps: (i) One which takes place at
the conceptualisation layer and aims at identifying concepts
and properties that further refine the classes and properties that
already appear in the ontological template. (ii) One which takes
place at the formalisation layer and aims at introducing a set of
classes and properties that formalise the newly identified
concepts and properties. This iterative process ceases when the
concepts that already appear in the ontological template need
not be, or cannot be, further refined at the chosen level of
abstraction. Of course, if this level of abstraction changes and a
more granular representation of concepts is favoured, new
concepts that refine existing ones can be introduced anew.
Going back to the access control example of Section III.A, a
policy may initially be defined in terms of a set of top-level
concepts including: the physical location, the time of day, the
subject, the kind of access and the object. Each such concept is
defined as a class in the ontological template. Nevertheless,
some of these top-level concepts may prove overly abstract to
be of practical use. A 2nd pass therefore ensues which
identifies, at the conceptualisation layer, concepts that refine
one or more of the existing concepts in the ontological
template. For example, the physical location concept may be
refined in terms of concepts that determine different ways of
specifying locations (e.g. point coordinates, points of interest,
geographical areas, etc.). These refining concepts are then
formalised in terms of new classes and properties.

Finally, it is to be noted here that the classes and properties
of the ontological template are also used by the higher-level
ontology briefly discussed in Section III.A. In fact, these
classes and properties form an adequate basis for the definition
of domain-specific constraints concerning the allowable
ingredients of a policy.

2 The mere identification of the concepts that participate in a set of

policies is not, by itself, sufficient for the construction of such a

higher-level ontological framework. An entire body of constraints

that restrict the different allowable forms of a policy must be

articulated.

C. Reification Layer

At the third layer, a final reification step takes place
whereby the classes and properties of the ontological policy
template are instantiated in order to give rise to concrete
policies. For instance, going back to the access control
example, a concrete policy may be derived by instantiating the
subject attribute with the individual ‘Bob’, the location
attribute with the geographical coordinates that correspond to
Bob’s office, the object attribute with a particular data resource
and the kind of access attribute with the value ‘read/write’.
Such a policy essentially grants to Bob read/write access to the
particular data resource from his office.

In the following sections we shall demonstrate how the
multi-layered framework presented above can be used for
modelling a certain class of security policies, namely the
PaaSword policies.

IV. SECURITY POLICIES IN THE CLOUD: AN ABSTRACT

FRAMEWORK

As stated in Section I, the PaaSword project discerns three
kinds of security policy: data encryption policies, data
fragmentation and distribution policies, and access control
policies. The latter allow, or disallow, access to sensitive data
objects on the basis of a set of contextual attributes pertaining
to the entity requesting the access. Context awareness is
considered of utmost importance for safeguarding access in
dynamic and heterogeneous cloud environments [17].
Attribute-based Access Control (ABAC) policies, due to their
inherent generality stemming from their reliance on the generic
concept of an attribute, are deemed particularly suitable for
infusing such contextual awareness [19]. They are thus adopted
in PaaSword.

Following the multi-layered framework of Section III, we
model the PaaSword security policies by initially identifying
and informally describing a set of top-level concepts that are
involved in the definition of these policies. These top-level
concepts are subsequently formalised in terms of ontological
classes and object properties.

A. PaaSword Policies: Conceptualisation Layer

The top-level concepts involved in the definition of the
PaaSword policies are readily provided by USDL-SEC: Linked
USDL’s simple vocabulary for describing the security
properties of an application [18]. This section provides a brief
informal description of this vocabulary. Nevertheless, an
outline of the reasons that led us to the decision to adopt the
concepts offered by USDL-SEC is first in order.

1) Linked USDL. Linked USDL [18] is a remodelled
version of USDL [20] which draws upon the results and
experience gained with USDL, as well as with prior research
efforts in the realm of Semantic Web Services and business
ontologies [21]. It builds upon the principles of Linked Data in
order to promote its use in a ‘web of data’. In this respect, it
expresses specifications in terms of an RDF vocabulary [22]
that provides better support for the generic description of web
and cloud services. Linked USDL comprises a Core schema,
as well as a number of additional schemata, or profiles,

addressing diverse business aspects of a cloud service. In this
work we are interested in the Security profile (USDL-SEC)
which provides an adequate basis for describing generically
any security policy. The adoption of Linked USDL brings
about a number of advantages [21]. Firstly, Linked USDL
relies on existing widely-used RDF vocabularies, such as
GoodRelations [23] the Simple Knowledge Organization
System (SKOS) ontology [24], and FOAF [25]. In this respect,
it promotes knowledge sharing whilst it increases the
interoperability, and thus the reusability and generality, of our
security policies. Secondly, by offering a number of different
profiles, Linked USDL provides a holistic and generic solution
able to adequately capture a wide range of business details. In
addition, Linked USDL is designed to be easily extensible
through linking to further existing, or new, ontologies. This is
significant for our work for it facilitates seamless integration
with the vocabularies devised in [26] for describing the
concepts involved in the definition of the security policies (see
Section V for more details).

2) Informal Description of the USDL-SEC Vocabulary.
USDL-SEC identifies the five top-level concepts depicted in
Fig. 2, namely Security Profile, Security Goal, Security
Mechanism, Security Technology and Security Realisation
Type. The Security Profile concept includes the different
security profiles to which a cloud application may adhere. A
security profile is tied to at least one security goal. This gives
rise to the Security Goal concept that includes a set of sub-
concepts each representing a distinct security goal – Fig. 2
depicts the list of security goals that are supported by USDL-
SEC. A security goal is associated with the security mechanism
through which it is implemented. This introduces the Security
Mechanism concept that includes sub-concepts for representing
particular security mechanism kinds – Fig. 2 depicts the list of
security mechanism kinds that are provided by USDL-SEC. A
security mechanism is associated with a particular security

Fig. 2. USDL-SEC

technology that implements it, giving rise to the Security
Technology concept. Moreover, a security mechanism is
related to the particular layer of the ISO/OSI protocol stack at
which it operates (for instance, the Application or Network
layer); this brings about the Security Realization Type concept
whose role is to determine this layer.

B. PaaSword Policies: Formalisation Layer

The concepts and their associations identified in the
informal description of Section IV.A are formalised in terms of
the USDL-SEC ontology depicted in Fig. 2. More specifically,
each concept is formulated as a class of the ontology, and each
concept association is formulated as an object property3. In
particular, the following four object properties are discerned:
hasSecurityGoal that links a security profile with its

security goal(s); isImplementedBy that relates a security

goal with the mechanism through which it is achieved;
isRealizedByTechnology that links a security

mechanism with the particular technology that realises it;
hasSecurityRealizationType that determines the

ISO/OSI layer at which the security mechanism operates.
Furthermore, the SKOS broader property [24] is employed in
order to express the fact that one concept forms a sub-concept
of another. This framework of classes and properties forms an
abstract ontological template that lays the foundations for
constructing a model for the generic representation of the three
kinds of security policy outlined at the beginning of Section IV.
In Section V, we demonstrate how this framework is refined in
order to derive an ontological template for modelling ABAC
policies. The other two kinds of policy, namely data encryption
and data fragmentation and distribution policies, are modelled
analogously – the interested reader is referred to [27] for a
relevant account.

V. ABAC POLICIES: AN ABSTRACT FRAMEWORK

We model ABAC policies by refining the USDL-SEC
concepts presented in Section IV. The refinement proceeds
either by using existing classes that already appear in the
USDL-SEC vocabulary (e.g. the Security Mechanism concept
is refined in terms of its narrower Access Control concept – see
Fig. 2), or by introducing new concepts, and their associations,
that are subsequently formalised into ontological classes and
properties. In the former case, the refinement is performed
directly at the formalisation layer. In the latter case, the
refinement requires an iteration between the conceptualisation
and formalisation layers. In particular, the new concepts and
their associations are identified and informally described at the
conceptualisation layer and their subsequent formalisation in
terms of classes and object properties takes place at the
formalisation layer.

A. Refining USDL-SEC for ABAC Policies Using Existing

Classes

ABAC policies are modelled under a particular security
profile, namely the PaaSword Access Control (PAC) profile,

3 All USDL-SEC classes and properties are prefixed with the

usdl-sec namespace. This namespace is omitted here to reduce

notational clutter.

which is represented as an instance of the class
SecurityProfile (see Fig. 3)4. The security goal of this

profile is authorisation. As depicted in Fig. 3, this is modelled
by refining the SecurityGoal class in terms of the USDL-

SEC Authorization class and defining an instance of this

class, namely AccessControlGoal, to represent the

particular authorisation goal. This goal is implemented by a
security mechanism, in particular, an access control
mechanism. This is captured by refining the
SecurityMechanism class in terms of the USDL-SEC

AccessControl class and defining an instance in this class,

namely AccessControlMechanism, which represents the

access control mechanism offered by the PaaSword framework.
This mechanism operates at the application layer of the
ISO/OSI protocol. This is captured by refining the
SecurityRealizationType class in terms of the USDL-

SEC InUsageType class5 and introducing an instance of this

class, namely AccessControlType.

B. Refining USDL-SEC for ABAC Policies by Introducing

New Concepts

The PaaSword access control mechanism is implemented in
terms of a security technology that is based on a particular
ABAC model, one which takes into account the context from
within which an access request is made. In order to model such
a security technology, a number of new concepts, and their
associations, need to be introduced and described at the
conceptualisation layer. These are the PaaSword ABAC
concept, which represents the particular ABAC technology
utilised, and the ABAC Policy Set concept, which bundles
together the ABAC policies on which the PaaSword ABAC
concept relies. These two concepts are formalised by
introducing the classes PaaSwordABAC and

ABACPolicySet respectively (see Fig. 3). These classes are

interrelated through the object property
hasABACPolicySet. The instance

AccessControlTechnology represents the particular

security technology that the PaaSword project utilises.

C. Further Refining USDL-SEC for ABAC Policies

The ABACPolicySet concept introduced above

encompasses the ABAC policies on which PaaSword relies.

This concept must be further refined in order to derive an

ontological model of the actual ABAC policies that it

comprises. Such a refinement entails the introduction of a set

of new concepts and their associations. It thus entails a new

iteration between the conceptualisation and formalisation

layers. In particular, the new concepts are identified and

informally described at the conceptualisation layer and are

subsequently formalised to make their way into the

ontological template of Fig. 3.

4 All classes, properties and instances introduced as part of the

formalisation and reification of the PaaSword Access Control

profile are drawn from the pac namespace. To reduce notational

clutter, this namespace is omitted from all textual descriptions (it

appears though in the figures).
5 This class represents one of the classes offered by USDL-SEC.

The conceptualisation and formalisation of these new concepts

is further elaborated below.

1) Conceptualisation Layer. Following an approach

inspired by the XACML standard [8], ABAC policy sets are

refined by associating them with the actual policies that they

comprise which are, in turn, associated with sets of rules. In

this respect, the concepts ABAC Rule and ABAC Policy are

introduced. The ABAC Rule concept is the basic building

block of an ABAC policy. It represents the template depicted

in Table I. This template defines a generic structure to which

all PaaSword ABAC rules adhere. It comprises the attributes

Actor, Context Expression, Auth, Action and Controlled

Object which are represented in terms of a set of

corresponding concepts. Thus, the concept Actor identifies the

subject requesting to carry out an operation on a data object;

the concept Context Expression represents an expression that

determines the contextual conditions that must be satisfied in

order to allow, or disallow, an operation on a data object; the

concept Auth specifies the kind of authorisation (i.e. ‘permit’

or ‘deny’) that is granted; the concept Action articulates the

requested operation; the concept Controlled Object identifies

the sensitive object.

TABLE I. RULE TEMPLATE

[Actor] with [Context Expression] has [Auth] for [Action] on
[Controlled Object]

2) Formalisation Layer. The concepts ABAC Rule and

ABAC policy are formalised in terms of the classes

ABACRule and ABACPolicy respectively – see Fig. 4.

These classes are interrelated through the object property

hasABACRule which associates an ABAC policy with its

constituent rules. In addition, the ABACPolicy class is

associated with the policy set to which it belongs through the

property belongsToABACPolicySet. The rest of the

concepts informally presented above are formalised as

follows. The Controlled Object concept is formalised in terms

of the class Object. This class is associated with an ABAC

rule through the object property hasControlledObject.

It is part of the Context Model [17] [26] – a vocabulary of

relevant classes and properties that has been devised in the

PaaSword project for describing the various contextual

attributes that may appear in an ABAC rule6. For reasons of

space, the Context Model (CM) is not further elaborated here.

The interested reader is referred to [26] for more details. The

concept Auth is formalised in terms of the class

Authorisation. This class is associated with an ABAC

rule through the object property hasAuthorisation. It

invariably comprises the two instances depicted in Fig. 4. The

concept Action is formalised in terms of the class

Permission. This class belongs to the CM and is associated

with an ABAC rule through the object property

hasAction. The concept Actor is formalised in terms of the

class Subject. This class belongs to the CM and is

associated with an ABAC rule through the object property

hasActor. Finally, the concept Context Expression is

formalised in terms of the CM class ContextExpression

which is associated with an ABAC rule through the object

property hasContextExpression. This class is further

elaborated in Section V.D below.

6 The pcm namespace, as well as the ppm and pcpm namespaces

(see Fig. 4 and Fig. 5), are defined as part of the Context Model

[17], [26]. To reduce notational clutter, these namespaces are

again omitted from textual descriptions.

Fig. 3. USDL-SEC refinement

D. Context Expressions for ABAC Policies

The class ContextExpression specifies the contextual

conditions that must be satisfied in order to allow, or disallow,
an operation on a sensitive object. Any further specification of
this concept requires the introduction of new concepts and their
associations. It thus entails a new iteration between the
conceptualisation and formalisation layers as outlined below.

1) Conceptualisation Layer. The context expression is
founded on the ContextPattern and

SecurityContextElement concepts. The former

identifies any historical access patterns that need to be
considered in order to permit, or deny, an access request. Such
patterns are defined in terms of a number of contextual
attributes such as the ‘physical location’ pattern, the ‘date and
time’ pattern, the ‘type of device of access’ pattern, etc. The
latter identifies the contextual attributes, as well as their
allowable values and value ranges, that are taken into account
in order to decide whether to permit, or deny, an access
request.

2) Formalisation Layer. The two concepts informally
outlined above are formalised in terms of the CM classes
ContextPattern and SecurityContextElement

respectively (see Fig. 5). These classes are associated with the
class ContextExpression via the object properties

hasPatternParameter and hasParameter

respectively (Fig. 5). A context expression may be defined
recursively by logically combining one or more other context
expressions. This is captured through the hasParameter

and hasPatternParameter properties that relate the

ContextExpression class with itself. It is also captured

by the four subclasses of ContextExpression depicted in

Fig. 5 which indicate the kinds of logical connectivity used.
This is better explained through an example. Suppose a
context expression (call it expr) that allows access to a

hypothetical sensitive object only during workdays and not
from the location “IMU premises”. As depicted in Fig. 6,
expr is an instance of the class ANDContextExpression

and thus it is the logical conjunction of two parameters: the
IsWorkday parameter and a nested context expression. The

IsWorkday parameter is an instance of the CM class

DateTimeInterval and represents a time interval

restricted through the CM properties hasBeginning and

hasEnd. The nested context expression is an instance of the

class NOTContextExpression and thus logically negates

the InIMUPremises parameter. This parameter is an

instance of the CM class AbstractLocation and is

restricted through the CM properties hasLatitude,

hasLongitude and hasRadius to represent a particular

geographical area.

VI. CONCLUSIONS

This paper has proposed a multi-layered iterative
framework for the construction of an ontological template for
the semantic representation of security policies in dynamic and
heterogeneous cloud environments. We argue that this
framework facilitates developers in expressing effective
security policies which give rise to appropriate security
controls that safeguard sensitive data in the cloud. One of the
virtues of the proposed ontological template is that it is
expressed in a generic, interoperable and extensible RDF
vocabulary that lends itself to, and therefore paves the way for,
a series of correctness checks that are performed automatically
by a policy validator. These checks aim at assessing the
validity of a policy with respect to a higher-level ontology that

Fig. 4. Ontological representation of rules and policies

Fig. 5. Ontological representation of a context expression

captures all those ingredients that a policy may, or may not,
comprise. These correctness checks are clearly of utmost
importance for they increase assurance on the effectiveness of
the policies.

As part of future work, we intend to construct the higher-
level ontology. This ontology essentially constitutes a schema
which imposes a number of constraints on the RDF statements
that may, or may not, be encountered in a policy that has been
formulated according to the multi-layered framework of
Section III. These constraints are expressed using the Integrity
Constraints (IC) semantics for the OWL 2 Web Ontology
Language proposed in [15]. A policy validator that parses the
higher-level schema, as well as an input policy, and determines
whether the latter complies with the former may then be
constructed. Moreover, as part of future work, we intend to
construct an editor through which a user will be able to ‘prime’
the higher-level ontology with appropriate constraints for a
particular domain of application.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 644814. The
authors would like to thank Dr Yiannis Verginadis and Dr
Ioannis Patiniotakis for their contribution to the formalisation
of context expressions, as well as the anonymous reviewers for
their valuable comments.

REFERENCES

[1] Cloud Computing Reference Architecture. Technical report, NIST
(2011)

[2] “What’s Hindering the Adoption of Cloud Computing in Europe?,” 15
September 2015. [Online]. Available:
https://blog.cloudsecurityalliance.org/2015/09/15/whats-hindering-the-
adoption-of-cloud-computing-in-europe/

[3] CloudPassage, “Cloud Security Spotlight Report,” LinkedIn, 2015

[4] Veloudis, S., Paraskakis, I., Petsos, C.: Cloud Service Brokerage:
Strengthening Service Resilience in Cloud-Based Virtual Enterprises. In
Camarinha-Matos et al. (eds.) PRO-VE 2015. LNCS, vol 463, pp. 122--
135, Springer, Heidelberg (2015)

[5] OWL 2 Web Ontology Language Primer (2nd Edition),
https://www.w3.org/TR/owl2-primer/

[6] RDF 1.1 XML Syntax, http://www.w3.org/TR/2014/REC-rdf-syntax-
grammar-20140225/

[7] PaaSword project, http://www.paasword.eu/

[8] Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy
Specification Language. In Sloman, M., Lobo, J., Lupu, E. (eds.) In

Proceedings of the International Workshop on Policies for Distributed
Systems and Networks (POLICY '01), pp. 18-38, Springer-Verlag,
London (2000)

[9] eXtensible Access Control Markup Language (XACML) Version 3.0. 22
January 2013. OASIS Standard. http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

[10] Security Assertions Markup Language (SAML) Version 2.0. Technical
Overview 25 March 2008. OASIS Standard. https://www.oasis-
open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-
cd-02.pdf (2008)

[11] WS-Trust 1.3. 19 March 2007. OASIS Standard. http://docs.oasis-
open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc (2007)

[12] Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A., Dalton, J.,
and Aitken, S.: KAoS Policy Management for Semantic Web Services.
IEEE Intel. Sys. 19, 4, 32--41 (2004)

[13] Kagal, L., Finin, T., Joshi, A.: A Policy Language for a Pervasive
Computing Environment. In 4th IEEE Int. Workshop on Policies for
Distributed Systems and Networks (POLICY '03), pp. 63--74, IEEE
Computer Society, Washington, DC (2003)

[14] Nejdl, W., Olmedilla, D., Winslett, M, Zhang. C.C.: Ontology-Based
policy specification and management. In Gómez-Pérez, A. and Euzenat,
J. (eds.) ESWC'05, pp. 290-302, Springer-Verlag, Berlin, Heidelberg
(2005)

[15] Tao, J., Sirin, E., Bao, J. and McGuinness, D. L.: Integrity Constraints in
OWL, In Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI-10), Atlanta, Georgia, USA, July 11-15 (2010)

[16] Weitzner, D. J., Hendler, J., Berners-Lee, T. and Connolly, D.: Creating
a Policy-Aware Web. Web and Information Security, pp. 1–31. DOI:
10.4018/978-1-59140-588-7.ch001 (2006)

[17] Veloudis, S., Verginadis, Y., Patiniotakis, I., Paraskakis, I., Mentzas, G.:
Context-aware Security Models for PaaS-enabled Access Control.
CLOSER Conference (2016)

[18] Linked USDL, http://www.linked-usdl.org/

[19] Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller R.,
and Scarfone K.: Guide to Attribute Based Access Control (ABAC)
Definition and Considerations. NIST (2014)

[20] Barros, A. and Oberle, D.: Handbook of Service Description: USDL and
its Methods, Springer (2012)

[21] Cardoso, J., Pedrinaci, C., Leidig, T., Rupino P. and Leenheer, P.:
Foundations of Open Semantic Service Networks. International Journal
of Service Science, Management, Engineering, and Technology, vol. 4,
no. 2, 1-16 (2013)

[22] Cardoso, J., Pedrinaci, C., Leidig, T.: Linked USDL: a Vocabulary for
Web-scale Service Trading. In 11th Extended Semantic Web Conference
(ESWC) (2014)

[23] GoodRelations: The Professional Web Vocabulary for E-Commerce.
http://www.heppnetz.de/projects/goodrelations/

[24] SKOS Simple Knowledge Organization System.
http://www.w3.org/2004/02/skos/

[25] The FOAF Project. http://www.foaf-project.org/

[26] PaaSword Deliverable 2.1. https://www.paasword.eu/deliverables/

[27] PaaSword Deliverable 2.2. https://www.paasword.eu/deliverables/

Fig. 6. Context expression modelling example

https://blog.cloudsecurityalliance.org/2015/09/15/whats-hindering-the-adoption-of-cloud-computing-in-europe/
https://blog.cloudsecurityalliance.org/2015/09/15/whats-hindering-the-adoption-of-cloud-computing-in-europe/
https://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.paasword.eu/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc
http://www.linked-usdl.org/

