
A Generic Mechanism for Cloud Service Governance and
Quality Control

Simeon Veloudis
South East European Research

Centre (SEERC)
The University of Sheffield

International Faculty, CITY College
Thessaloniki, Greece

(+30)2310253477

sveloudis@seerc.org

Iraklis Paraskakis
South East European Research

Centre (SEERC)
International Faculty of the University

of Sheffield, CITY College
Thessaloniki, Greece

(+30)2310253477

iparaskakis@seerc.org

Christos Petsos
South East European Research

Centre (SEERC)
International Faculty of the University

of Sheffield, CITY College
Thessaloniki, Greece

(+30)2310253477

chpetsos@seerc.org

ABSTRACT

With the pervasion of cloud computing the enterprise IT

environment is progressively transformed into an ecosystem of

highly distributed, task-oriented, modular, and collaborative cloud

services. In order to deal effectively with the complexity inherent

in such ecosystems, future enterprises are anticipated to

increasingly rely on cloud service brokerage (CSB). This paper

presents a CSB mechanism which offers capabilities with respect

to the Quality Assurance dimension of CSB. The proposed

mechanism evaluates the compliance of cloud services with pre-

specified policies concerning the technical, and mainly the business

aspects, of service deployment and delivery. By relying on a

declarative representation of both services and policies, the

proposed mechanism is kept generic and orthogonal to any

underlying cloud delivery platform.

Categories and Subject Descriptors

• Software and its engineering ~ Cloud computing

• Information systems ~ Semantic web description languages.

Keywords

Cloud computing; cloud service brokerage; service governance;

policy-based governance; quality control; service description

languages; Linked USDL

1. INTRODUCTION
Cloud computing introduces an economy-based paradigm

whereby infrastructure, platform, and application resources are

abstracted as services [1]. Its increasing adoption transforms the

enterprise IT environment into an ecosystem of wide-ranging,

diverse, and interwoven services delivered remotely by a multitude

of providers. Nevertheless, despite the significant advantages in

terms of cost, flexibility and business agility [2,20], as the number

of services proliferates, it becomes increasingly complex to reason

with respect to service provision and consumption. For instance, it

becomes increasingly complex to reason about certain aspects of

service governance such as compliance to policies and regulations,

and conformance to service level agreements (SLAs). The situation

is further perplexed by the evolution of services, either through

intentional changes initiated by service providers, or through

unintentional changes, such as variations in service performance

and availability.

In order to deal effectively with this complexity, future

enterprises are anticipated to increasingly rely on cloud service

brokerage (CSB) [1]. In this respect, the work in [22] proposed a

conceptual architecture of a general framework which offers

capabilities with respect to two dimensions of CSB, namely Quality

Assurance Service Brokerage, and Service Customisation

Brokerage. These capabilities revolve around three themes: (i)

governance and quality control; (ii) failure prevention and

recovery, and (iii) optimisation. The 1st theme is primarily

concerned with checking the compliance of services with pre-

specified policies concerning their technical and business aspects

of delivery. It is also concerned with testing services for

conformance with their expected behaviour, and with continuously

monitoring their operation for conformance with SLAs. The 2nd

theme is concerned with the reactive and proactive detection of

service failures, and the selection of suitable adaptation strategies

to prevent, or recover, from such failures. The 3rd theme is

concerned with continuously identifying opportunities to optimise

service consumption with respect to such goals as cost, quality, and

functionality.

Continuing the work in [22], this paper presents a high-level

account of a CSB mechanism which offers capabilities with respect

to the governance and quality control theme. This mechanism

comprises three main components: (i) the Service Completeness-

Compliance Checker (SC3), which is responsible for evaluating the

compliance of services with pre-specified policies concerning the

technical, and mainly the business aspects, of service deployment

and delivery; (ii) a governance registry system which is responsible

for the lifecycle management of services and policies; (iii) a

messaging system which is responsible for delivering services to

the SC3 and to the governance registry system.

By adopting a declarative approach to service description, one

which is based on an RDF(S) ontology, the presented CSB

mechanism models services independently of the code that it

employs for checking their compliance with policies. It thus

overcomes a shortcoming encountered in current governance

mechanisms, namely the lack of separation of concerns between

service definition and policy enforcement [13,21]. In this respect,

the CSB mechanism is kept generic and orthogonal to any

underlying cloud service delivery platform.

The rest of this paper is structured as follows. Section 2 presents

a motivating scenario. Section 3 outlines a conceptual architecture

for the CSB mechanism and presents our declarative approach to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

PCI 2015, October 01 - 03, 2015, Athens, Greece

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-3551-5/15/10...$15.00

DOI: http://dx.doi.org/10.1145/2801948.2801988
.

service description; it also provides an overview of the process

employed by the SC3 for evaluating services against policies.

Section 4 presents brief accounts of the messaging and governance

registry components of the CSB mechanism. Section 5 outlines

related work and Section 6 presents conclusions and future work.

2. CASE STUDY SCENARIO
The CSB framework proposed in [22] offers capabilities

spanning the main phases of a service’s lifecycle, namely Service

On-boarding, Operation, and Evolution. This paper focuses on a

particular mechanism of this framework which offers capabilities

with respect to the Service On-boarding phase1. Below we identify

these capabilities through an imaginary, albeit realistic case study.

Let CMx be a cloud marketplace through which a multitude of

services are made available. CMx offers a variety of apps

developed, and possibly pre-deployed, by a network of ecosystem

partners.

Table 1: Entry-level criteria

Service-

level

Attribute

Acceptable

Values
SLO Comments

𝑠𝑡𝑜𝑟𝑎𝑔𝑒

[100,1000) Gold storage

Size in TB [10,100) Silver storage

[0,10) Bronze storage

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦

[0.99999,1) Gold availability
Total

uptime ratio [0.9999,1) Silver availability

[0.999,1) Bronze availability

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

256 Gold encryption
Key-length

in bits
192 Silver encryption

128 Bronze encryption

Suppose that an ecosystem partner offers a new pre-deployed

service to CMx, call it 𝑆𝑡𝑜𝑟𝑒𝐶𝑙𝑜𝑢𝑑, which provides encrypted and

versioned cloud storage. In order for the new service to become

available on CMx, a number of entry-level criteria must be

satisfied. These crucially capture a set of service-level objectives

(SLOs) expressed in terms of restrictions on relevant service-level

attributes; Table 1 summarises the service-level attributes, and

their corresponding SLOs, considered for the purposes of this

paper. These SLOs essentially form CMx’s business policy (BP)

with respect to deploying 𝑆𝑡𝑜𝑟𝑒𝐶𝑙𝑜𝑢𝑑. The BP additionally

incorporates a set of service-level profiles (SLPs). SLPs are

groupings of SLOs whose purpose is to formulate different

‘deployment packages’ offered by CMx. For example, a ‘gold’

SLP may group together the ‘gold’ SLOs of each of the service-

level attributes of Table 1. Of course, the number of SLPs offered

by CMx, and the SLOs that these comprise, is an application-

specific issue determined by CMx itself. For instance, CMx may

choose to define a ‘gold’ SLP as an SLP that comprises either

‘gold’-only SLOs, or two ‘gold’ SLOs and a ‘silver’ SLO;

alternatively, it may choose to define the latter grouping as a

‘silver’ SLP2.

1 The mechanism also offers capabilities with respect to the Service

Operation phase, by continuously evaluating the behaviour of a

service during its consumption. These capabilities shall not,

however, concern us in this paper.

We assume that the ecosystem partner who offers 𝑆𝑡𝑜𝑟𝑒𝐶𝑙𝑜𝑢𝑑,

hereafter referred to as the service provider (SP), submits a service

description (SD) which details the manner in which 𝑆𝑡𝑜𝑟𝑒𝐶𝑙𝑜𝑢𝑑 is

deployed. This SD incorporates all those service-level attribute

values that 𝑆𝑡𝑜𝑟𝑒𝐶𝑙𝑜𝑢𝑑 commits to sustain. We term these values,

the service levels (SLs) that 𝑆𝑡𝑜𝑟𝑒𝐶𝑙𝑜𝑢𝑑 offers. The SD also

incorporates the SLP according to which 𝑆𝑡𝑜𝑟𝑒𝐶𝑙𝑜𝑢𝑑 aspires to be

deployed.

Our CSB mechanism provides an SD evaluation capability which

essentially allows CMx to determine whether the SD is compliant

with the BP. Such a capability entails two kinds of evaluation: SD

completeness evaluation and SD compliance evaluation. The

former kind of evaluation aims at determining whether the SD

specifies SLs for all required service-level attributes. For example,

an SD which does not specify an SL for the 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 attribute

(see Table 1) cannot be considered complete. The latter kind of

evaluation aims at determining whether the specified SLs fall

within the corresponding ranges, or exactly match the values,

prescribed in the BP. For example, an SD which specifies a 192-

bit value for the 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 attribute (see Table 1), whilst it

aspires to be deployed according to the ‘gold’ SLP, cannot be

considered compliant.

3. THE SC3 COMPONENT
The SC3 lies at the heart of our CSB mechanism. It offers three

main functionalities: (i) BP parsing and standalone evaluation; (ii)

SD evaluation; (iii) continuous evaluation of the behaviour of a

service during its consumption. In this paper we focus on the SD

evaluation functionality. The rest of this section is structured as

follows. Section 3.1 presents a brief description of a conceptual

architecture for the CSB mechanism with reference to the scenario

of Section 2. Section 3.2 describes our approach to the declarative

representation of SDs – an approach which forms the basis of the

SD evaluation process implemented by the SC3. Section 3.3

provides a high-level account of this evaluation process.

3.1 CSB Mechanism Conceptual Architecture
As depicted in Figure 1, the SP submits 𝑆𝑡𝑜𝑟𝑒𝐶𝑙𝑜𝑢𝑑’s SD

through the SP-facing component – an interface which exposes an

editor for facilitating the construction of the SD. The SD is then

transported to the SC3 mechanism, and also stored in the

Governance Registry (GReg) depicted in Figure 1; the

transportation takes place through a Publish/subscribe (Pub/sub)

system. An explanation of the reasons for opting for the WSO2

Carbon platform [24] (see Figure 1), as well as for advocating the

Pub/sub paradigm for transporting SDs, is deferred until Section 4.

Figure 1: CSB conceptual architecture

The SC3 exposes a callback function3 for subscribing to the

appropriate topic of the Pub/sub system and receiving the SDs;

2 For simplicity, in this paper we assume that a ‘gold’ SLP

comprises only the ‘gold’ SLOs of Table 1.

3 The reasons for employing a callback function are explained in

Section 4.1.

more specifically, upon the arrival of an SD, the SC3 triggers three

main methods: 𝑔𝑒𝑡𝐵𝑟𝑜𝑘𝑒𝑟𝑃𝑜𝑙𝑖𝑐𝑦, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠𝐶ℎ𝑒𝑐𝑘, and

𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝐶ℎ𝑒𝑐𝑘. The former method extracts all the required

information from the BP for the subsequent SD completeness and

compliance evaluations, whilst the latter two methods implement

these evaluations. All three methods are implemented in Java using

the Apache Jena (Core and ARQ) APIs [5]. High-level accounts of

the latter two methods are provided in Section 3.3; an account of

the former method is beyond the scope of this paper and can be

found in [7].

3.2 Declarative Representation of SDs
We represent an SD in terms of a suitable framework of RDF

instances. These instances populate the classes of an RDF(S)

ontology, one which we employ in order to model a BP. This

ontology is based on Linked USDL [14]: a lightweight RDF

vocabulary for the description of policies and services with an

emphasis on pertinent business aspects. The reasons for opting for

Linked USDL are briefly outlined in Section 5; a more complete

discussion can be found in [21]. By incorporating an ontology for

modelling BPs and SDs, SC3 achieves a clear separation of

concerns: SDs are represented independently of the code that SC3

employs for evaluating them. In this respect, SC3 is kept generic

and orthogonal to the underlying cloud service delivery platform.

A description of the RDF(S) ontology for modelling BPs is

beyond the scope of this paper; the interested reader is referred to

[6, 7, 21] for a relevant account. Below we outline our approach to

modelling SDs with reference to the 𝑆𝑡𝑜𝑟𝑒𝐶𝑙𝑜𝑢𝑑 example.

3.2.1 Service-level Representation
As mentioned in Section 2, the SD incorporates a set of service

levels (SLs). Each SL specifies the value of a particular service-

level attribute; it is represented in our model in terms of a suitable

RDF instance. For example, the SL corresponding to the

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 attribute is represented by the instance 𝑆𝐿-

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of Figure 2.

An SL specifies the value of its service-level attribute in terms of

a suitable service-level expression (SLE), one which is represented

in our model by an RDF instance, e.g. the 𝑆𝐿𝐸-𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦

instance of Figure 2. The SL is associated with its corresponding

SLE through a suitable RDF property, e.g. the ℎ𝑎𝑠𝑆𝐿𝐸𝐴𝑣𝑎𝑖𝑙
property (see Figure 2).

An SLE incorporates a variable along with an appropriate value

(or range of values) for this variable. For example, the SLE

corresponding to the 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 attribute, incorporates the

availability variable which is expressed by the RDF instance 𝑉𝑎𝑟-

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (see Figure 2). The SLE is associated with this

variable via the property ℎ𝑎𝑠𝑉𝑎𝑟𝐴𝑣𝑎𝑖𝑙. This variable is in turn

associated, via the property ℎ𝑎𝑠𝑉𝑎𝑙𝐴𝑣𝑎𝑖𝑙, with a range of values

represented by the instance 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒. This latter

instance is associated with its delimiting values through the

ℎ𝑎𝑠𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒𝐹𝑙𝑜𝑎𝑡 and ℎ𝑎𝑠𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒𝐹𝑙𝑜𝑎𝑡 properties4.

The framework of interconnected instances described above

models the SL corresponding to the 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 service-level

attribure; the SD encompasses analogous frameworks for the rest

of the service-level attributes of Table 1 (see Figure 2).

3.2.2 Service-level Profile Representation
In addition to SLs, an SD also incorporates the service-level

profile (SLP) according to which it aspires to be deployed. For

example, the 𝑆𝑡𝑜𝑟𝑒𝐶𝑙𝑜𝑢𝑑 SD includes the 𝑆𝐿𝑃-𝐺𝑜𝑙𝑑 instance (see

4 These are properties of the GoodRelations ontology (http://

www.heppnetz.de/ontologies/goodrelations/v1.html).

Figure 2) indicating that it aspires to be deployed according to the

‘gold’ SLP offered by CMx. Of course, it is up to the SC3 to

determine whether such an aspiration can be fulfilled by evaluating

– on the basis of the corresponding BP – the SLs that the SD

incorporates. These SLs are associated with the SLP instance

through object properties such as ℎ𝑎𝑠𝑆𝐿𝐴𝑣𝑎𝑖𝑙, ℎ𝑎𝑠𝑆𝐿𝐸𝑛𝑐𝑟𝑦𝑝𝑡,
and ℎ𝑎𝑠𝑆𝐿𝑆𝑡𝑜𝑟𝑎𝑔𝑒 of Figure 2. The SD refers to the corresponding

BP through the 𝐵𝑃-𝐶𝑃𝑥 instance (see Figure 2). An account of the

ontology framework which is represented by this instance is, as

already mentioned, beyond the scope of this paper.

3.3 SD Completeness and Compliance

Evaluation
In order to evaluate an SD, the SC3 mechanism constructs a

programmatic representation of the SLs outlined in Section 3.2. As

mentioned in Section 2, such an evaluation entails a completeness

and a compliance evaluation.

3.3.1 Completeness Evaluation
The 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠𝐶ℎ𝑒𝑐𝑘 algorithm starts off by determining

whether each SL encompasses all required instances. It then checks

whether these instances are interconnected through the appropriate

RDF object properties. For example, consider the SL for the

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 attribute in Figure 2. The algorithm first checks

whether the following instances exist: (i) an instance representing

the SL (𝑆𝐿-𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛); (ii) an instance representing the

corresponding SLE (𝑆𝐿𝐸-𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛); (iii) an instance

representing the variable which the SLE binds (𝑉𝑎𝑟-𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛);

(iv) an instance representing the value of this variable

(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒). If one or more of these instances are missing,

the SL representation – hence the SD – cannot be considered

complete. The algorithm then checks whether these instances are

interconnected through RDF properties such as the ones depicted

in Figure 2. If one or more of these properties are missing the SD

cannot be considered complete. In addition, the SL representation

cannot be considered complete if erroneous instance

interconnections exist, for example an RDF property

Figure 2: 𝑺𝒕𝒐𝒓𝒆𝑪𝒍𝒐𝒖𝒅 SD representation

interconnecting the 𝑆𝐿-𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 instance with the 𝑉𝑎𝑟-

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 instance.

The algorithm also checks whether the SD encompasses an SLP

instance and determines whether this instance is associated,

through appropriate RDF object properties (such as ℎ𝑎𝑠𝑆𝐿𝐴𝑣𝑎𝑖𝑙,
ℎ𝑎𝑠𝑆𝐿𝐸𝑛𝑐𝑟𝑦𝑝𝑡, and ℎ𝑎𝑠𝑆𝐿𝑆𝑡𝑜𝑟𝑎𝑔𝑒 of Figure 2), with the

provided SLs. Finally, the algorithm checks whether the SD

encompasses an instance representing the corresponding BP (e.g.

𝐵𝑃-𝐶𝑃𝑥).

3.3.2 Compliance Evaluation
The compliance checking algorithm proceeds by determining

whether the values, or value ranges, specified in the SD are in

accordance with the allowable values, or value ranges, specified in

the corresponding BP. More specifically, the algorithm starts off by

determining the number of data values that are associated, through

the properties ℎ𝑎𝑠𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒𝐹𝑙𝑜𝑎𝑡, ℎ𝑎𝑠𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒𝐹𝑙𝑜𝑎𝑡,
ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒𝐼𝑛𝑡𝑒𝑔𝑒𝑟, or ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒𝐹𝑙𝑜𝑎𝑡, with each instance

representing the value of a variable (e.g. the 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒

instance of Figure 2). If this number is not equal to 1 (i.e. if a

particular instance is associated with two or more data values, or

with no data values), the SD cannot be considered compliant.

The algorithm then proceeds to check that the data values

associated with such value instances either match with, or are

subsumed by (in the case of ranges), the corresponding values in

the BP and, in particular, the corresponding values in the SLP that

the SD has opted for. For example, the algorithm checks whether

the value associated with the 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒 instance is exactly

256, because this is the encryption value demanded by the ‘gold’

SLP that the SD has opted for. Similarly, it checks whether the

range [0.99999,1) associated with the 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒, and the

value 200 associated with the 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑉𝑎𝑙𝑢𝑒, are subsumed by the

corresponding ranges specified in the ‘gold’ SLP.

4. THE MESSAGING AND GOVERNANCE

REGISTRY COMPONENTS
In addition to the SC3, our CSB mechanism encompasses a

messaging component and a governance registry component. This

section describes the technologies that we have utilised in order to

implement these components, and justifies our choices by outlining

the benefits that these technologies bring to the CSB mechanism.

4.1 The Messaging Component
We advocate the Pub/sub paradigm for transporting SDs to the

SC3 and to the governance registry system (see Figure 1). Below

we briefly describe this paradigm and outline the benefits that it

brings about.

4.1.1 The Topic-based Pub/sub Paradigm
The Pub/sub paradigm typically employs a number of topics (for

instance the 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛/𝑆𝐷 topic of Figure 1) for transporting

messages between sending and receiving entities: the former

publish messages to topics which are then delivered to those

receiving entities that have subscribed to these topics (i.e. to the so-

called subscribers). Receiving entities employ callback functions

(see Figure 1) for subscribing to topics and subsequently receiving

messages.

The Pub/sub paradigm achieves a three-dimensional decoupling

[10] between sending and receiving entities: (i) space decoupling,

whereby sending and receiving entities are agnostic to each other;

(ii) time decoupling, whereby sending and receiving entities do not

5 As mentioned at the beginning of Section 3, one of the

functionalities offered by the SC3 (and which is not considered in

(necessarily) participate simultaneously in message exchanges; (iii)

synchronisation decoupling, whereby sending entities are not

blocked when publishing messages, and receiving entities get

asynchronously notified of the arrival of new messages (whilst, for

example, performing some concurrent activity).

Such a multidimensional decoupling brings the following

advantages to our CSB mechanism. Firstly, due to synchronisation

and time decoupling, the performance of the SC3 remains largely

unaffected by communication overheads and bottlenecks.

Secondly, space and synchronisation decoupling enhance the

scalability of our mechanism by facilitating its potential for SD

evaluation. For example, consider the scenario in which multiple

SC3 instances are deployed for balancing SD evaluation on the

basis of, say, pre-defined functional service categories. Each SC3

instance subscribes to appropriate topics, where each topic

transports SDs corresponding to a particular functional category.

Each SC3 instance then automatically (and asynchronously) gets

notified every time an SD is published to one of the topics to which

it has subscribed. This facilitation is further reinforced by the ability

of the Pub/sub mechanism to provide tree-like hierarchical

decompositions of topics, reflecting the usual tree-like hierarchical

decompositions of functional categories. Last but not least, the

space dimension of decoupling allows the SC3 to be updated, or

even completely replaced, without affecting the SP-facing

components (see Figure 1). This increases the portability and

reusability of our CSB mechanism.

4.1.2 The WSO2 Message Broker
We have implemented a Pub/sub system on top of the WSO2

Message Broker (MB) [26], an open source server which provides

messaging functionality for the WSO2 Carbon platform. The WSO2

MB brings a number of advantages to our CSB mechanism, besides

the ones outlined above. Firstly, in addition to supporting JMS, a

robust and mature specification which provides interoperability

within the Java Platform, the WSO2 MB also supports AMQP [4].

This significantly increases the generality of the CSB mechanism

by enabling interoperability with many languages/platforms (e.g.

Java, .Net, C, C++, PHP, Ruby, Erlang and more), and hence

imposing virtually no restrictions on the implementation of the SP-

facing components of Figure 1. Secondly, the WSO2 MB supports

eventing (and in particular WS-Eventing) which facilitates the SC3

in communicating to SPs significant events that occur during

service operation5 in the form of messages. Thirdly, the WSO2 MB

increases the scalability and elasticity of our CSB mechanism in

several ways: (i) by allowing MB nodes to be added/removed

dynamically, at system run-time; (ii) by allowing message storage

capacity to scale linearly using the Apache Cassandra database

management system; (iii) by intelligently allocating the load

between MB nodes using the Apache Zookeeper service. In

addition, the WSO2 MB exhibits the necessary reliability features

by capitalising on the failure recovery functionality offered by

Apache Zookeeper, and the fault-tolerant message persistence

offered by Apache Cassandra. Last but not least, the WSO2 MB

allows JMS queueing of large messages – a feature which is

desirable for our CSB mechanism in the face of large SDs.

4.2 The Governance Registry Component
Cloud service governance refers to policy-based management of

cloud services with emphasis on quality assurance [11]. Current

practice [15, 27] focuses on the use of registry and repository (RR)

systems for storing and managing the lifecycle of services. These

this paper) is continuous evaluation of the behaviour of a service

during its consumption, i.e. during service operation.

are typically combined with purpose-built software to check the

conformance of services with relevant policies. In our work, we

have opted for the open-source WSO2 Governance Registry (GReg)

system [25]. The main reason that led us to this decision is that are:

it provides ample support for SOA governance and service lifecycle

management; it provides an extensible OSGi-based architecture [3]

which allows the necessary customisation for facilitating the needs

of our CSB mechanism.

More specifically, with respect to SOA governance, the WSO2

GReg provides support for governing all aspects of services,

including SDs, policies, and service consumption. In particular, it

acts as a policy store for any policy enforcement point such as the

SC3.This naturally facilitates the retrieval of BPs for the evaluation

of SDs. In addition, the WSO2 GReg provides support for a wide

range of services (REST, JSON, SOAP, Thrift, etc.) which

increases the generality and extensibility of our CSB mechanism.

Moreover, the WSO2 GReg provides comprehensive lifecycle

management including dependency tracking and impact analysis.

This increases the potential of the CSB mechanism for scalability:

as the number of services proliferates, the impact of the evolution

of a service on other dependent services is automatically tracked

and dealt with through the provision of appropriate event handlers.

Such evolution may be caused either through intentional changes,

initiated by SPs (e.g. in the form of service updates), or through

unintentional changes during service consumption, such as

variations in service performance. In addition, the WSO2 GReg

provides content introspection and validation features which

facilitate the standalone BP evaluation functionality offered6 by the

SC3. Last but not least, the WSO2 GReg is seamlessly integrated

with the WSO2 MB.

5. RELATED WORK
This section provides an overview of: (i) governance registries

(other than the WSO2 GReg) that have been considered for our

mechanism; (ii) works that address the lack of separation of

concerns in current governance registry systems; (iii)

communication paradigms (other than the Pub/sub) that have been

considered for our mechanism.

In addition to the WSO2 GReg, two popular open-source RR

systems have been considered for their suitability for our work:

Membrane Registry [16] and Mule Galaxy [17]. The former is more

oriented to monitoring consumed services and lacks support for

service lifecycle management; it is therefore less appropriate for

our CSB mechanism than the WSO2 GReg. The latter provides

support for service lifecycle management but lacks the handlers for

triggering the SC3 when significant events occur during service

consumption. In addition, it lacks the extensibility and

customisability offered by WSO2 GReg through its OSGi-based

architecture. It too is therefore less appropriate for our CSB

mechanism than the WSO2 GReg.

A general weakness in current governance registry systems, is

their inability to achieve a proper separation of concerns between

service and policy definition, and policy enforcement. This has a

number of negative repercussions such as lack of portability and

lack of explicit representation of policy interrelations. Several

works have attempted to address this shortcoming [8,23,11,18].

These generally employ bespoke languages, and ontologies, for

capturing policies; the policies are then enforced at run-time

typically through the use of a reference monitor. Closer to our

approach are the works in [23,11,18] which embrace Semantic Web

6 As mentioned in Section 3, this is one of the functionalities offered

by the SC3 which is not considered in this paper.

representations for capturing the knowledge encoded in policies.

KAoS [23] is a general-purpose policy management framework

which exhibits a three-layered architecture including a policy

management layer, which uses OWL for encoding and managing

policy-related knowledge, and a policy monitoring and

enforcement layer. Rei [11] is a policy specification language

expressed in OWL-Lite. It allows the declarative representation of

a wide range of policies which are purportedly understandable by a

wide range of autonomous entities in open, dynamic environments.

In [18], POLICYTAB is proposed for supporting trust negotiation

in Semantic Web environments. It advocates an ontology-based

approach for describing policies that drive a trust negotiation

process aiming at providing controlled access to Web resources.

Whilst achieving a proper separation of concerns between policy

specification and policy enforcement, the aforementioned

semantically-enhanced approaches rely on bespoke, non-standards-

based, ontologies for the representation of policies. Such ontologies

generally lack the expressivity for addressing the business details

that characterise cloud services. They are therefore inadequate, as

they stand, for capturing the SDs on which this work reports. In this

respect, we have opted for Linked USDL: a language which readily

provides the necessary constructs for capturing the required

business policies.

Turning now to SD transportation, in addition to the Pub/sub

paradigm, we have considered the following paradigms: message

passing, remote procedure calls, and the observer design pattern.

These paradigms offer synchronisation decoupling, but no

decoupling in the time or space dimensions [10]; they therefore fail

to bring about the advantages discussed in Section 4.1.1. Similarly,

we have considered the distributed shared memory and point-to-

point message queuing paradigms which provide space and time

decoupling, but not synchronisation decoupling [10]. In addition,

we have considered the content-based Pub/sub [19] and type-based

Pub/sub [9] paradigms. In the former, subscribers receive events

not by subscribing to predefined topics, but by determining the

properties of the events that they wish to receive. In the latter, an

analogous scheme is offered based on the type, rather than the

content of events. Both of these paradigms provide complex

abstractions which are generally not required in our CSB

mechanism which is mainly interested in the exchange of a single

type of message – namely SDs.

Finally, it is to be noted here that it is not within the scope of this

paper to provide a comparison between different available open-

source message brokers that could be used as a replacement of the

WSO2 MB. Such comparisons are often futile as most

configurations, features, or protocols differ widely.

6. CONCLUSIONS AND FUTURE WORK
We have presented a high-level description of our CSB

mechanism for cloud service governance and quality control. Our

mechanism encompasses three main components: the SC3, the

WSO2 GReg, and the WSO2 MB. With respect to the former, we

have outlined the declarative SD representation that it advocates,

and the two kinds of SD evaluation that it offers, namely

completeness and compliance evaluation. The SC3 achieves a clear

separation of concerns allowing SDs to be represented

independently of the code employed for evaluating them. In this

respect, it is kept generic and orthogonal to the underlying cloud

service delivery platform. With respect to the latter two

components, we have outlined the benefits that the chosen

technologies bring to the CSB mechanism.

Currently our CSB mechanism is being successfully used in the

frame of EU’s Broker@Cloud project (www.broker-cloud.eu) for

evaluating the CRM services that are on-boarded on an exising

commercial cloud application platform – namely the CAS Open

platform (http://www.cas-crm.com/). In the future we intend to

further assess the effectiveness of SC3 by incorporating it in a

number of additional cloud platforms, in particular IaaS and PaaS

platforms.

7. ACKNOWLEDGMENTS
This research is funded by the EU 7th Framework Programme

under the Broker@Cloud project (www.broker-cloud.eu), grant

agreement n°328392.

8. REFERENCES
[1] 2011. Cloud Computing Reference Architecture. NIST.

[2] 2011. Cloud: What an Enterprise Must Know. Cisco.

[3] 2011. Governance Registry brings integrity to SaaS platform.

Industrial Case Study Report. WSO2.

[4] AMQP. 2015. https://www.amqp.org. Accessed: 2015-04-22.

[5] Apache Jena, https://jena.apache.org. Accessed: 2015-04-22.

[6] Broker@Cloud. 2014. Deliverable 30.2 - Methods and tools

for brokerage-enabling description of enterprise cloud

services. http://www.broker-cloud.eu.

[7] Broker@Cloud. 2014. Deliverable 40.1 - Methods and

mechanisms for cloud service governance and quality

control. http://www.broker-cloud.eu.

[8] Damianou, N., Dulay, N., Lupu, E., and Sloman, M. 2001.

The Ponder Policy Specification Language. In Proceedings

of the International Workshop on Policies for Distributed

Systems and Networks (Bristol, UK, January 29-31 2001).

LNCS 1995. Springer-Verlag, London, UK,18-38

[9] Eugster, P., Guerraoui, R., and Damm, C. 2001 On objects

and events. In Proceedings of the 16th ACM SIGPLAN

conference on Object-oriented programming, systems,

languages, and applications (Florida, USA, October 14-18,

2001). OOPSLA '01. ACM, New York, NY, USA, 254-269.

DOI=10.1145/504282.504301

[10] Eugster, P.T., Felber, P.A., Guerraoui, R., and Kermarrec, A.

2003. The Many Faces of Publish/Subscribe. ACM Comput

Surv. 35, 2 (March 2003), 114-131. DOI=

10.1145/857076.857078

[11] Kagal, L., Finin, T., Joshi, A.: A Policy Language for a

Pervasive Computing Environment. In 4th IEEE Int.

Workshop on Policies for Distributed Systems and Networks

(Lake Como, Italy, June 4-6 2003). POLICY '03. IEEE

Computer Society, Washington, DC, USA, 63-74

[12] Kourtesis, D., Parakakis, I., and Simons, A.J.H. 2012.

Policy-driven governance in cloud application platforms: an

ontology-based approach. In Proceedings of the 4th

International Workshop on Ontology-Driven Information

Systems Engineering (Graz, Austria, July 24-27 2012).

ODISE’12. IOS Press, Amsterdam, The Netherlands.

[13] Kourtesis, D. and Paraskakis, I. 2011. A registry and

repository system supporting cloud application platform

governance. In Proceedings of the 4th International

Conference on Service Oriented Computing (Paphos, Cyprus,

December 5-8, 2011). LNCS vol. 7221. Springer,

Berlin/Heidelberg, 255-256. DOI= 10.1007/978-3-642-

31875-7_36

[14] Linked USDL. http://linked-usdl.org/. Accessed: 2015-04-22.

[15] Marks, E.A. 2008. Service-Oriented Architecture

Governance for the Services Driven Enterprise. Wiley.

[16] Membrane Open Source SOA Registry and Web Services

Monitoring. http://www.membrane-soa.org/soa-registry.

Accessed: 2015-04-22.

[17] MuleSoft Service Registry and Repository.

http://www.mulesoft.com/resources/esb/service-registry-

repository. Accessed: 2015-04-22.

[18] Nejdl, W., Olmedilla, D., Winslett, M., and Zhang. C.C.

2005. Ontology-Based policy specification and management.

In Proceedings 2nd European Semantic Web Conference

(Heraklion, Greece, May 29th – June 1st, 2005). ESWC’05.

LNCS 3532. Springer-Verlag, Berlin, Heidelberg, 290-302

[19] Rosenblum, D. and Wolf, A. 1997. A design framework for

Internet-scale event observation and notification. In

Proceedings of the 6th European Software Engineering

Conference/ACM SIGSOFT 5th Symposium on the

Foundations of Software Engineering. ACM Press, New

York, NY, 344–360.O

[20] Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.

2008. A break in the clouds: Towards a cloud definition.

SIGCOMM Comput. Commun. Rev. 39, 1 (December 2008)

50-55. DOI = 10.1145/1496091.1496100.

[21] Veloudis S., Paraskakis, I., Friesen, A., Verginadis, Y.,

Patiniotakis, I. 2014. Underpinning a Cloud Brokerage

Service Framework for Quality Assurance and Optimisation,

In Proceedings of the 6th IEEE International Conference on

Cloud Computing Technology and Science (Singapore,

December 15 – 18, 2014), CloudCom’2014, IEEE, New

York, NY, 660-663. DOI = 10.1109/CloudCom.2014.146.

[22] Veloudis, S., Paraskakis, I., Friesen, A., Verginadis, Y.,

Patiniotakis, I., and Rossini, A. 2014. Continuous Quality

Assurance and Optimisation in Cloud-based Virtual

Enterprises. In Proceedings of the 15th International Working

Conference on Virtual Enterprises (Amsterdam, The

Netherlands, October 5-7 2014). PRO-VE’14. LNCS 434,

Springer, Heidelberg, 621-632, DOI= 10.1007/978-3-662-

44745-1_61

[23] Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A.,

Dalton, J., and Aitken, S. 2004. KAoS Policy Management

for Semantic Web Services. IEEE Intell. Syst. 19, 4, 32-41

[24] WSO2 Carbon – 100% Open Source Middleware Platform.

http://wso2.com/products/carbon. Accessed: 2015-04-22.

[25] WSO2 Governance Registry, http://wso2.com/products/

governance –registry. Accessed: 2015-04-22.

[26] WSO2 Message Broker, http://wso2.com/products/message-

broker. Accessed: 2015-04-22.

[27] Zhang, L.J. and Zhou, Q. 2009. CCOA: cloud computing

open architecture. In Proceedings of the IEEE International

Conference on Web Services (Los Angeles, CA, USA, July

6-10 2009). ICWS 2009, IEEE Press, New York, 607-616

