
ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 5, 2007, PP XX-YY 1

Formal Verification of Web Service
Behavioural Conformance through Testing

Dimitris Dranidis
Computer Science Department

CITY College
Affiliated Institution of the University of Sheffield

Tsimiski 13, 54624 Thessaloniki, Greece
dranidis@city.academic.gr

Dimitrios Kourtesis, Ervin Ramollari
SEERC - South East European Research Centre
17 Mitropoleos Str., 54624 Thessaloniki, Greece
{dkourtesis,erramollari}@seerc.org

Abstract—The value proposition of Web service technol-
ogy lies in composability, reusability, and substitutability,
a set of key characteristics that however give rise to
major challenges when realising service-based systems,
such as trustworthiness and interoperability. Thus, being
able to verify that a Web service implementation conforms
to certain functional or non-functional requirements is
instrumental in engineering dependable service-based sys-
tems. This paper introduces a new approach to verifying
the conformance of a Web service implementation against
a behavioural specification, through the application of
testing. We propose the use of Stream X-machines as
an intuitive modelling formalism for constructing the
behavioural specification of a stateful Web service, and
propose the use of a method for deriving test cases
from that specification in an automated way. The test
generation method has been proven to produce complete
sets of test cases that are guaranteed to reveal all non-
conformance faults in a service implementation under
test. The verification approach that we put forward can
be applied in a range of different contexts and yield
significant benefits for all types of stakeholders in a SOA
environment, i.e. service providers, service consumers, and
service brokers.

Index Terms—Service-Oriented Architecture, Web Ser-
vice Testing, Test Case Generation, Formal Methods,
Stream X-Machines.

I. INTRODUCTION

SERVICE-oriented computing is an emerging
paradigm for distributed computing that is chang-

ing the way software applications are architected, re-
alised, delivered, and consumed [11]. The term Service-
Oriented Architecture (SOA) refers to a software ar-
chitecture perspective where nodes on a network make
computational resources available to other network

nodes in the form of services. Services are self-
contained, autonomous, highly reusable software com-
ponents with programmatic interfaces that can be de-
scribed, discovered and used independently of their
underlying platform, implementation language, or soft-
ware vendor.

The prevailing approach for realising SOA today is
through Web services, primarily due to the way in which
Web services naturally implement the SOA philosophy
of loose coupling and reusability and promote interoper-
ability by leveraging on widely accepted standards like
WSDL, SOAP, and UDDI.

As with all types of software artefacts, testing is
an integral component of the Web services develop-
ment lifecycle. In addition, a number of distinctive
characteristics that Web services have, such as their
value proposition for reusability, composability, and
substitutability, but also key challenges like trustworthi-
ness and interoperability, make testing indispensable for
post-development lifecycle phases as well. Notably, this
applies to services that either stand alone as individual
components, or are orchestrated within a Web service
composition.

Testing is a means to verify whether a Web ser-
vice conforms to certain functional or non-functional
requirements. Non-functional requirements may reflect
constraints on performance, security, or other Quality
of Service (QoS) properties. Functional requirements
relate to the behaviour that a Web service is expected
to exhibit when consumed. Different types of testing
techniques can be applied depending on the require-
ments and the type of conformance to be asserted, but
in most of the cases, testing can only be performed in

ISSN 1109-9305 c© 2006 AMCT

2 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 5, 2007, PP XX-YY

a black-box manner, since a Web service’s source code
is usually unavailable. Verifying the conformance of a
Web service’s behaviour against consumer requirements
is especially challenging in the case of stateful Web
services in which an interaction protocol is assumed.
As will be presented in the next section of this paper,
a number of research works have attempted to address
this type of problem with the help of formal methods.
A common characteristic in all of these works is the
construction of a model explicating the behaviour of a
service, and the generation of test cases to assert that a
service implementation indeed meets the specification
requirements.

This paper introduces a new approach to verifying the
conformance of a Web service implementation against
a behavioural specification. We propose the use of
Stream X-machines [10] as a modelling formalism for
constructing the behavioural specification of a service
and generating test cases to verify that one or more
service implementations conform to that specification.
Stream X-machines are a subclass of X-machines [5]
that extend Finite State Machines (FSMs) and are
supported by a test generation method that is guaranteed
to reveal all faults in an implementation under test,
given that certain realistic conditions hold. The Web
service test set is represented as a sequence of operation
invocations with associated inputs and expected outputs.
By applying the generated set of tests to a stateful Web
service implementation and evaluating its responses
one can conclude if it is behaviourally-equivalent to
the original specification. As will be discussed in a
subsequent section of this paper, the application of
this verification approach can yield significant benefits
for all stakeholders in a service-based environment,
i.e. service providers, service consumers, and service
brokers.

The rest of the paper is structured as follows. Sec-
tion 2 presents a summary of related work on this
topic, i.e. on approaches for modelling the behaviour
of stateful Web services and for automatically or semi-
automatically generating tests to assert some form
of behavioural conformance. Section 3 provides an
overview of the verification approach put forward in
this paper, stating the basic assumptions on which it
is based. Section 4 introduces the Stream X-machine
modelling formalism and demonstrates the approach
for constructing a behavioural specification and the
procedure of generating test-sets, through a stateful
Web service example scenario. Section 5 discusses the
benefits of the verification approach in different settings.
Section 6 concludes this paper by summarising the most
important aspects of the presented work, discussing the
strengths and limitations of the proposed approach, and
suggesting directions for future work.

II. RELATED WORK

Currently, most formal approaches to Web services
verification focus on how to guarantee desired proper-
ties in Web service compositions such as correctness,
fault-tolerance, deadlock avoidance, reachability, live-
ness, etc. [15], [7], [22], [21], [23]. Instead of verifying
the individual Web services participating in a compo-
sition, most of these approaches assume that they are
correct, and instead focus on verifying the composition
as a whole. Notably, the aforementioned approach does
not necessarily guarantee the trustworthiness of the
resulting composition. In contrast, the work presented
in this paper addresses formal verification and test
case generation at the level of individual Web services
(component services). The rest of this section discusses
some related state-of-the-art work that shares the same
focus.

Tsai et al [26] propose extending WSDL descriptions
with additional information that aids testing, including
input-output dependency, invocation sequences, hierar-
chical functional description, and sequence specifica-
tions. However, no method is given for generating test
cases from this augmented information. In subsequent
work [25] Tsai et al describe a specification-based
validation and verification technique, where the specifi-
cation is written in OWL-S, and the method of Boolean
expression analysis is used to extract the full scenario
coverage of Boolean expressions. The results are then
provided as input to a tool named Swiss Cheese in order
to generate both positive and negative test cases. The
test cases can be used for verifying the correctness of
the output produced by atomic service operations but
cannot be applied for evaluating complex behaviour
in stateful services which results from a sequence of
operation invocations. As a result, the testing procedure
lacks coverage for behavioural aspects, and cannot be
considered sufficient for verifying behavioural confor-
mance of stateful Web services.

Heckel and Mariani [9] employ graph transformation
rules in a service discovery and matchmaking approach,
for modelling both the behaviour of the provided service
and the consumer’s requirements. They propose a test
case derivation method based on the service model that
the provider supplies with the service description, in
order to verify that the actual service implementation
is compliant with the attached model. The resulting
test cases include both single operation invocations
as well as sequences of operations. Nevertheless, test
case derivation is based on partition testing, which is
a domain-dependent strategy that relies on the tester’s
experience to split the input domain into subsets. This
may lead to non-uniform and biased tests. Moreover,
the test case derivation algorithm considers only data
flow for the generation of the test cases and ignores

DIMITRIS DRANIDIS ET AL “FORMAL VERIFICATION OF WEB SERVICE BEHAVIOURAL CONFORMANCE THROUGH TESTING” 3

control flow criteria, which are an important factor when
verifying behavioural compliance.

Keum et al [19] present an approach to modelling
and testing stateful Web services based on Extended
Finite State Machines (EFSMs), a Finite State Ma-
chines variant that has been extended with memory,
as well as with predicate conditions and computing
blocks for state transitions. A procedure is described
for semi-automatically deriving the EFSM model from
a WSDL specification and additional user input. The
model covers behavioural aspects of stateful Web ser-
vices, and the resulting test cases represent sequences
of invocations of Web service operations. Compared
to other approaches in the literature, the test case
generation algorithm that is employed provides better
testing coverage, since it considers both control flow
and data flow [1]. The authors provide experimental
results showing that their method has the potential to
find more faults compared to other methods, but notably,
with a resulting test case set that is much larger and
takes more time to execute.

Of all the aforementioned approaches, the one by
Keum et al [19] seems to be the most mature solution to
the problem of verifying the behavioural conformance
of stateful Web services, and the one that is most
relevant to our work. Nevertheless, in contrast to the
test case generation method that is employed in [19],
the method that our approach relies on can generate a
complete test-set that is proven to reveal all faults in an
implementation under test [13], given certain realistic
assumptions [10].

III. DESCRIPTION OF THE APPROACH

The approach that we put forward in this paper, as
illustrated in Figure 1, comprises of five phases: (i) con-
structing a model of a Web service’s intended behaviour,
(ii) generating test cases based on this model, (iii) map-
ping the abstract input/output messages in the test cases
to concrete messages in a Web service implementation
under test, (iv) feeding the test cases to the respective
Web service operations via a SOAP interface, and lastly,
(v) evaluating the service responses with respect to the
expected output. If the testing process does not reveal
any errors, the Web service implementation can be
considered behaviourally-equivalent to the Web service
specification.

The intended behaviour of a Web service is formally
specified using the Stream X-machine formalism [10].
Stream X-machines provide the modelling constructs
necessary for precisely defining the control flow and
temporal ordering of operations in a stateful Web ser-
vice; responses of operations in a stateful Web service
depend not only on the input provided by the consumer,
but also on the internal state of the service, itself

a result of previous operation invocations. The next
section provides an example of a stateful Web service
(the ShoppingCart Web service) whose desired be-
haviour is modelled using a Stream X-machine.

A Stream X-machine based testing method [13], [10]
that extends the W-method [2], enables us to derive a
complete finite set of test cases that is proven to find all
faults in the implementation. The method requires that
the models satisfy certain design for test conditions, i.e.
they are complete with respect to memory and output
distinguishable. The outcome of the test generation
algorithm is a finite set of input and expected output
sequences.

The inputs and expected outputs need to be mapped
to concrete executable test cases that can be processed
by a testing engine, in order to interact with the Web
service under test and provide the results. A number
of commercial and non-commercial Web service testing
tools are available for this purpose, such as SOAtest by
Parasoft [24], and Coyote, described in [27].

The testing method guarantees that, if the input
sequences fed to the Web Service implementation under
test produce the expected results, then the implementa-
tion conforms to the specification.

For our approach to be applicable, we assume that
the operations of the Web service under test follow
the request-response pattern, i.e. they accept a request
(input) message from the invoker and return a response
(output) message. This makes it possible to fulfil the
output distinguishable design for test condition, i.e.
any two different processing functions should produce
different outputs on each memory/input pair. As a result
it is possible to tell from the outputs which processing
functions have been activated during an execution path.
We don’t consider this assumption to be too restrictive,
since request-response patterns are the normal case for
Web service operations.

IV. MODELLING WEB SERVICES AS STREAM
X-MACHINES

A. Stream X-Machines

Stream X-machines (SXMs) [20], [10] is a computa-
tional model capable of modelling both the data and the
control of a system. SXMs are special instances of the
X-machines introduced by Eilenberg [5]. They employ
a diagrammatic approach of modelling the control by
extending the expressive power of finite state machines.
In contrast to finite state machines, SXMs are capable
for modelling non-trivial data structures by employing
a memory, which is attached to the state machine.
Additionally, transitions between states are not labelled
with simple input symbols but with processing func-
tions. Processing functions represent internal system

4 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 5, 2007, PP XX-YY

Fig. 1. Behavioural conformance verification of Web services through testing.

transitions triggered by input symbols under specific
memory conditions, and produce output symbols while
modifying the memory.

The benefit of the addition of a memory structure is
that state explosion is avoided and the number of states
is reduced to those states which are considered critical
for the correct modelling of the system.

A (deterministic) SXM is defined as follows [10]:
SXM = (Σ,Γ, Q,M,Φ, F, q0,m0) where:

• Σ and Γ is the input and output finite alphabet
respectively;

• Q is the finite set of states;
• M is the (possibly) infinite set called memory;
• Φ, which is called the type of the machine SXM ,

is a finite set of partial functions (processing func-
tions) φ that map an input and a memory state to
an output and a new memory state, φ : Σ×M →
Γ×M ;

• F is the next state partial function that given a
state and a function from the type Φ, provides the
next state, F : Q × Φ → Q (F is often described
as a transition state diagram);

• q0 and m0 are the initial state and memory respec-
tively.

The sequence of transitions (path) caused by the stream
of input symbols is called a computation. The com-
putation halts when all input symbols are consumed.
The result of a computation is the sequence of outputs
produced by this path.

The SXM models can be thought to apply in similar
cases where Statecharts [8] and other similar mod-
els do. However, apart from being formal as well as
proven to possess the computational power of Turing

machines [10], SXMs have the significant advantage
of offering a testing method [10], [13] that ensures
conformance of an implementation to a specification.
This method generates test sets for a system specified
as a SXM whose application ensures that the system
behaviour is identical to that of the specification, pro-
vided that the system is made of fault-free components
and some explicit design for test requirements are met.

In order to assist the application of Stream X-
machines the XMDL (X-Machine Definition Language)
language was introduced in [14] and fully developed
in Kefalas [16]. XMDL serves as a common language
for the development of tools supporting Stream X-
machines [17]. An extension of XMDL to support an
object-based notation was suggested in [3]. The object-
based extension, called XMDL-O, enables an easier and
more readable specification of Stream X-machines and
is employed in this paper for the specification of the
example Web service.

B. The Shopping Cart Service Example and its SXM
Model

1) The Web Service Example: The example we use to
illustrate our approach is a simplified version of a Web
service that is intended to provide the backend func-
tionality of a shopping cart to client applications. The
service allows a client to perform authentication, add
items to a shopping cart or remove them, and proceed to
checkout. Similar Web services providing functionality
for storing and retrieving e-commerce orders are already
in use and can be found on-line.1 2

1http://webservices.amazon.com/AWSECommerceService/
2http://www.xwebservices.com/Web Services/XWebCheckOut/

DIMITRIS DRANIDIS ET AL “FORMAL VERIFICATION OF WEB SERVICE BEHAVIOURAL CONFORMANCE THROUGH TESTING” 5

The ShoppingCart Web service provides the fol-
lowing operations:

• The login operation allows authentication for
using the service. It is invoked with the input mes-
sage LoginRequest consisting of the username
and the password of the user. The request message
is represented as:

LoginRequest(user, pwd)

The operation sends back the response mes-
sage LoginResponse(result), where result is
a boolean value; true indicates successful authen-
tication.

• The addToCart operation adds an item to the
shopping cart. It is invoked with the input message
AddToCartRequest consisting of the identifier
of the item to be added. The request message is
represented as:

AddToCartRequest(itemId)

The operation sends back the response mes-
sage AddToCartResponse(itemId). It is as-
sumed that all item identifiers are valid and corre-
spond to products that may be purchased.

• The clearCart operation removes all items
from the shopping cart. It is invoked with the
simple request message ClearCartRequest
represented as

ClearCartRequest()

and it sends back the response message
ClearCartResponse().

• The operation checkout completes the shopping
process. It is invoked with the simple request
message CheckoutRequest represented as:

CheckoutRequest()

and it sends back the response message
CheckoutResponse().

2) Stateful Behaviour: The ShoppingCart ser-
vice is a stateful Web service; the availability of its
operations depends on the internal state of the service.
For instance, the client is not allowed to perform any
operation before authenticating, and checking out only
makes sense with a non-empty cart. These two aspects
of the stateful behaviour of the service are depicted in
the state transition diagram of the SXM specification
(Figure 2).

It has to be noted that the transitions on the diagram
do not correspond to operations or messages of the Web

Fig. 2. State transition diagram for the ShoppingCart Web
service.

service but to processing functions as specified in a
subsequent section. Furthermore, some transitions that
represent exceptional behaviour are not shown in the
diagram for the sake of clarity. For instance, attempting
to invoke the operation addItem while the service
is found at state waiting, will exercise the self-
transition faultyAddItem. Similar transitions exist
for the rest of the operations and the states.

3) The Memory: The memory in the
ShoppingCart service example is used to store
information about valid user accounts and the contents
of the shopping cart. The XMDL-O code in Figure 3
shows the definition of accounts as a set of Account
objects and the cart as a set of item identifiers (strings).
For the purpose of testing the system we assume that
there are two valid user accounts.

#class Account {
username: string,
password: string,

}.

#objects:
account1: Account,
account2: Account,
accounts: set_of Account,
cart: set_of string.

#init_values:
account1.username <- "usr1",
account1.password <- "pwd1",
account2.username <- "usr2",
account2.password <- "pwd2",
accounts <- {account1, account2},
cart <- emptySet.

Fig. 3. XMDL-O code for the specification of the memory.

4) Specification of the Processing Functions: State
transitions in SXMs are labelled with processing func-
tions. A processing function is triggered by an input
event when a specified guard condition holds, produces
some output, and potentially updates (modifies) the
memory. The updating of the memory consists of a
sequence of assignments as specified in the update
part of the processing function definition.

6 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 5, 2007, PP XX-YY

#fun loginOK(LoginRequest(?usr, ?pwd)) =
if ?account \= null and ?pwd = ?account.password
then (LoginResponse(true))
where

?account <- head (select(username = ?usr, accounts)).

#fun loginFailed(LoginRequest(?usr, ?pwd)) =
if ?account = null or ?pwd \= ?account.password
then (LoginResponse(false))
where

?account <- head (select(username = ?usr, accounts)).

#fun addItem(AddToCartRequest(itemId)) =
then (AddToCartResponse())
update

cart <- itemId addsetelement cart.

#fun clear(ClearCartRequest()) =
then (ClearCartResponse())
update

cart <- emptySet.

#fun checkOut(CheckOutRequest()) =
if cart \= emptySet
then (CheckOutResponse()).

Fig. 4. XMDL-O code for the definition of processing functions.

The XMDL-O code in Figure 4 shows the definition
of processing functions. When modelling Web services,
the inputs and the outputs of the processing functions
correspond intuitively to request and response messages
of Web services respectively.

C. Test Generation

The greatest benefit of modelling systems with SXMs
it the existence of a test generation method which under
certain assumptions [12], [10], it is proven to find
all faults in the implementation. The testing method
is a generalization of the W-method [2]. It works on
the assumption that the system specification and the
implementation can be both represented as Stream X-
machines with the same type Φ (i.e. both specifi-
cation and implementation have the same processing
functions) and Φ satisfies the following design for
test conditions: completeness with respect to memory
(all processing functions can be exercised from any
memory value using appropriate inputs) and output dis-
tinguishability (any two different processing functions
will produce different outputs if applied on the same
memory/input pair).

When the above requirements are met, the Stream X-
machine testing method may be employed to produce
a complete test set of input sequences which can be
used for the verification of the implementation. In
fact it is proved that only if the specification and the

implementation are behaviourally equivalent, the test set
produces identical results when applied to both of them.
Otherwise it is guaranteed that it will reveal the faults
in the implementation.

The first step to constructing the test set of input
sequences is based on applying the W-method [2] on
the associated finite state automaton of the SXM, by
considering processing functions as simple inputs. The
test set X for the associated automaton consists of
sequences of processing functions and it is given by
the formula:

X = S(Φk+1 ∪ Φk ∪ . . . ∪ Φ ∪ {ε})W

where W is a characterization set, S a state cover of the
associated finite state automaton, and k is the estimated
difference of states between the implementation and the
specification. A characterization set is a set of sequences
of processing functions for which any two distinct states
of the machine are distinguishable and a state cover is
a set of sequences of processing functions such that all
states are reachable from the initial state. The sets W ,
S, and X (for k = 0) for the ShoppingCart Web
service example are presented in Figure 5.

The sequences of processing functions from the test-
set X have to be converted to sequences of inputs.
This is achieved by the fundamental test function
as described in [10]. For instance, the sequence of
processing functions 〈loginOK, addItem, addItem〉 is

DIMITRIS DRANIDIS ET AL “FORMAL VERIFICATION OF WEB SERVICE BEHAVIOURAL CONFORMANCE THROUGH TESTING” 7

W = {〈loginOK〉, 〈addItem〉, 〈checkOut〉}

S = {〈〉, 〈loginOK〉, 〈loginOK, addItem〉, 〈loginOK, addItem, checkOut〉}

X = { 〈loginOK〉, 〈addItem〉, 〈checkOut〉, 〈loginOK, loginOK〉,
〈loginFailed, loginOK〉, 〈addItem, loginOK〉, 〈clearCart, loginOK〉,
〈checkOut, loginOK〉, 〈loginOK, addItem〉, 〈loginOK, checkOut〉,
〈loginOK, loginOK, loginOK〉, 〈loginOK, loginFailed, loginOK〉,
〈loginOK, addItem, loginOK〉, 〈loginOK, clearCart, loginOK〉,
〈loginOK, checkOut, loginOK〉, 〈loginOK, loginOK, addItem〉,
〈loginOK, loginFailed, addItem〉, 〈loginOK, addItem, addItem〉,
〈loginOK, clearCart, addItem〉, 〈loginOK, checkOut, addItem〉,
〈loginOK, loginOK, checkOut〉, 〈loginOK, loginFailed, checkOut〉,
〈loginOK, addItem, checkOut〉, 〈loginOK, clearCart, checkOut〉,
〈loginOK, checkOut, checkOut〉, . . .}

Fig. 5. The sets W , S, and X (for k = 0). Note that X is not completely presented.

converted to the following sequence of inputs (Web
service messages with specific data values):

〈LoginRequest(”usr1”, ”pwd1”),
AddToCartRequest(”912”),
AddToCartRequest(”875”)〉

To complete the test generation process and enable a
testing engine to execute the test cases, these abstract
test cases have to be mapped to the respective operations
and messages of the Web service implementation under
test.

V. DISCUSSION

Verifying the conformance of a Web Service’s be-
haviour against a formal specification has a number of
important applications in the Web services realm, and
can yield benefits for all different types of stakeholders
in a SOA environment.

For service consumers who are considering one or
more candidate services to choose from, verification can
help determine if some service fits the business process
of the consumer before it gets actually used (try-before-
you-buy scenario), or before it replaces one of the
services already participating in a service composition
(try-before-you-replace scenario) [6].

For service providers who are outsourcing the devel-
opment of a Web service implementation to a third-
party, or are making frequent version releases of a
Web service to introduce features or correct errors,

verification can help detect inconsistencies with respect
to the original specifications or some earlier version of
the service (try-before-you-provide scenario).

For service brokers who perform matchmaking
among service requests and service advertisements, ver-
ification can help determine if a service advertisement
has been ill-specified due to a mistake on behalf of the
provider, or even malicious intent. This would allow
the broker to decide if a service advertisement should
be admitted for publication (try-before-you-publish sce-
nario) [9], or returned following the submission of a
request (try-before-you-suggest scenario).

VI. CONCLUSIONS

This paper introduces a new approach for verify-
ing the conformance of a Web service implementation
against a formal behavioural specification. We propose
the use of Stream X-machines [10] as an expressive
and intuitive formalism that is suitable for modelling
the behaviour of complex Web services adhering to a
stateful transaction protocol.

A significant advantage of Stream X-machines over
Finite State Machines (FSMs) is their capacity to model
truly complex systems without the state explosion oc-
curring in FSMs. However, the real strength of this
formalism is in testing. The Stream X-machine-based
test generation method that our approach is building on
can be proven to reveal all errors in an implementation
under test [13], given that certain realistic assumptions
hold [10]. Furthermore, this software verification ap-
proach has been already applied in a variety of contexts

8 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 5, 2007, PP XX-YY

in the past [18], [4] and can be readily supported by a
number of tools [17].

Future work will focus on relaxing some of the
restrictive assumptions in our approach, such as the
lack of support for message exchange patterns other
than request-response, or the requirement for structural
equivalence among the interface of the Web service
implementation under test and the specification model.
Moreover, we will seek means to automate the process
of mapping abstract to concrete input/output messages
by extending the approach to include support for Se-
mantic Web Services with SAWSDL interfaces and
semantic annotations on input/output messages based
on Description Logics (DL).

REFERENCES

[1] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. Automatic
executable test case generation for extended finite state machine
protocols. In Proceedings of IWTCS’97, pages 75–90, 1997.

[2] T. S. Chow. Testing software design modelled by finite state
machines. IEEE Transactions on Software Engineering, 4:178–
187, 1978.

[3] D. Dranidis, G. Eleftherakis, and P. Kefalas. Object-based
language for generalized state machines. Annals of Mathematics,
Computing and Teleinformatics (AMCT), 1(3):8–17, 2005.

[4] D. Dranidis and K. Tigka. Supporting test case generation for
extreme programming: a novel approach. In Proceedings of
the 10th Panhellenic Conference on Informatics (PCI 2005),
Greece, November 2005.

[5] S. Eilenberg. Automata, languages and machines. Academic
Press, New York, A, 1974.

[6] M. D. Ernst, J. H. Perkins, and R. Lencevicius. Detection of
web service substitutability and composability. In Proceedings
of the 1st International Workshop on Web Services Modeling
and Testing (WS-MaTe 2006), June 2006. Palermo, Italy.

[7] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of web service compositions. In Proceedings of
the 18th IEEE International Conference on Automated Software
Engineering (ASE’03), 2003.

[8] D. Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274, June 1987.

[9] R. Heckel and L. Mariani. Automatic conformance testing of
web services. In FASE 2005, pages 34–48. Springer, 2005.

[10] M. Holcombe and F. Ipate. Correct Systems: Building Business
Process Solutions. Springer Verlag, Berlin, 1998.

[11] M. N. Huhns and M. P. Singh. Service-oriented computing: Key
concepts and principles. IEEE Internet Computing, 9(1):75–81,
January 2005.

[12] F. Ipate. Theory of X-machines with Applications in Specifica-
tion and Testing. PhD thesis, Department of Computer Science,
University of Sheffield, 1995.

[13] F. Ipate and M. Holcombe. An integration testing method that
is proven to find all faults. International Journal of Computer
Mathematics, 63:159–178, 1997.

[14] E. Kapeti and P. Kefalas. A design language and tool for X-
machine specification. In Proceedings of the 7th Panhellenic
Conference on Information Techology, Greek Computer Society,
Ioannina, 1999.

[15] R. Kazhamiakin and M. Pistore. A parametric communication
model for the verification of BPEL4WS compositions. In
Proceedings of WS-FM’05, 2005.

[16] P. Kefalas. X-machine description language: User manual,
version 1.6. Technical Report WP-CS07-00, CITY College,
2000.

[17] P. Kefalas, G. Eleftherakis, and A. Sotiriadou. Developing tools
for formal methods. In Proceedings of the 9th Panhellenic
Conference in Informatics, pages 625–639, November 2003.

[18] P. Kefalas, M. Holcombe, G. Eleftherakis, and M. Gheorghe. A
formal method for the development of agent-based systems. In
V. Plekhanova, editor, Intelligent Agent Software Engineering,
pages 258–273. Springer, 2005.

[19] C. Keum, S. Kang, and I. Y. Ko. Generating test cases for web
services using extended finite state machine. In TestCom 2006,
pages 103–117. Springer, 2006.

[20] G. Laycock. The Theory and Practice of Specification-Based
Software Testing. PhD thesis, Dept of Computer Science,
Sheffield University, UK, 1993.

[21] D. A. Menasce. Composing web services: A QoS view. IEEE
Internet Computing, November-December 2004.

[22] S. Nakajima. Model-checking verification for reliable web
service. In Proceedings of the First International Symposium
on Cyber Worlds (CW’02), pages 378–385, November 2002.

[23] S. Narayanan and S. McIlraith. Simulation, verification and
automated composition of web services. In Proceedings of the
International World Wide Web Conference (WWW2002), pages
77–88, 2002.

[24] Parasoft. SOATest Data Sheet. www.parasoft.com.
[25] W. T. Tsai, Y. Chen, and R. Paul. Specification-based ver-

ification and validation of web services and service-oriented
operating systems. In Proceedings of 10th IEEE International
Workshop on Object-oriented Real-time Dependable Systems
(WORDS’05), pages 139–147, February 2005.

[26] W. T. Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang. Extending
WSDL to facilitate web services testing. In Proceedings of the
7th IEEE International Symposium on High Assurance Systems
Engineering (HASE’02), 2002.

[27] W. T. Tsai, R. Paul, S. Weiwei, and C. Zhibin. Coyote: an XML-
based framework for web services testing. In Proceedings of the
7th IEEE International Symposium on High Assurance Systems
Engineering (HASE’02), 2002.

	Introduction
	Related Work
	Description of the Approach
	Modelling Web Services as Stream X-Machines
	Stream X-Machines
	The Shopping Cart Service Example and its SXM Model
	The Web Service Example
	Stateful Behaviour
	The Memory
	Specification of the Processing Functions

	Test Generation

	Discussion
	Conclusions
	References

