

Introduction to Meta-Analysis

George Pavlidis

PhD candidate of Gerontology, University of Sheffield, IF

Why to conduct a meta-analysis

- Research efforts usually study

 a specific issue
 In a specific sample of the population

 Usual problems are
 - Contradictory results <u>between</u> studies
 - Can we generalize the results?

Why to conduct a meta-analysis

A meta-analysis synthesizes studies results to yield one conclusion about *The <u>existence</u> of an effect *The <u>direction</u> of the effect *The <u>strength</u> of the relationship *The <u>properties</u> of an effect

Example 1

- A baby should be accustomed to sleep on his stomach (Spock, 1950)
- 100.000 died of sudden infant death syndrome (SIDS) between 1950-1990
- SIDS decreased about 50% when babies put to sleep in their back
 - Narrative analysis
 - Systematic analysis

Example 2

- Does psychotherapy have a treatment effect on depression?
- Do pharmaceutical interventions have a treatment effect on depression?
- Does a combination of the two have effect on depression?
- Which kind of psychotherapy (psychodynamic vs. CBT) or medicine (SSRI's or MAO)

Effect size

The effect size, a value which reflects the magnitude of the treatment effect or (more generally) the strength of a relationship between two variables, is the unit of currency in a meta-analysis.

Impact of Statin Dose

On Death and Myocardial Infarction

The heterogeneity of the effect sizes

- Real differences in effects
 - Because of the conditions in question (e.g. low dose vs. high dose)
 - because of different characteristics of distinct samples
- Random
 - Because of similar but not identical condition applied between studies
 - * e.g., because of error in the measurement tool errors

In a meta-analysis, the relationships under scope can be based on

- 1. Correlations (one group)
- 2. Ratio (Binary data)
- 3. Means (raw, standardized, response rates)

The effect sizes in one form can be converted to another

Meta – analysis based on means

- Access on the M, SD, and N for each group of each study
- We compute out of it the effect size and variance Easy
- In reality you will deal with <u>partial data</u>
 You have to back-compute (a software does a lot of this job for you)

- Important to distinguish between
 pre-post studies
 Matched groups
 Response Ratios
- You may include different designs in the same analysis

Homogeneity of true effects

Figure 16.1 Dispersion across studies relative to error within studies.

Confidence intervals and prediction intervals

'.4 Impact of number of studies on confidence interval and prediction interval.

Comparing Subgroups

Meta regression

189

Risk ratio for TB (vaccine vs. placebo) Fixed-effects

Figure 20.1 Fixed-effect model – forest plot for the BCG data.

Meta regression

Publication Bias

igure 30.2 Passive smoking and lung cancer – funnel plot.

